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vaccine candidate antigens in the malaria
parasite Plasmodium falciparum
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Malaria vaccine development is hampered by extensive antigenic variation and complex life stages of
Plasmodium species. Vaccine development has focused on a small number of antigens, many of
which were identified without utilizing systematic genome-level approaches. In this study, we
implement a machine learning-based reverse vaccinology approach to predict potential new malaria
vaccine candidate antigens.We assemble and analyzeP. falciparum proteomic, structural, functional,
immunological, genomic, and transcriptomic data, and use positive-unlabeled learning to predict
potential antigens based on the properties of known antigens and remaining proteins. We prioritize
candidate antigens basedonmodel performanceon reference antigenswith different genetic diversity
and quantify the protein properties that contribute most to identifying top candidates. Candidate
antigens are characterized by gene essentiality, gene ontology, and gene expression in different life
stages to inform future vaccine development. This approach provides a framework for identifying and
prioritizing candidate vaccine antigens for a broad range of pathogens.

Artemisinin-based combination therapies and other tools have contributed
to substantial reductions in themalaria burden inmany endemic areas over
the last decade1.However, progress towardmalaria eliminationhas stalled as
malaria incidence has plateaued and gains have been threatened by the
emergence of resistance to interventions in the parasite and vector1–4. With
the possible future exception of dracunculiasis caused by Guinea worm, no
infectious disease has been completely eradicated without the aid of an
efficacious vaccine5,6. Thus, malaria vaccines are a critical tool for malaria
elimination.

Plasmodium parasites are transmitted to humans when infective
mosquitoes take a blood meal and inject sporozoites, which develop and
multiply in the liver.Vaccines directedagainst this pre-erythrocytic stage are
meant to block infection. After emerging from the liver, Plasmodium
merozoites invade and replicate inside red blood cells. This erythrocytic
stage of the life cycle causes malaria disease and death, which blood-stage
vaccines are intended to limit. Transmission-blocking vaccines would
inhibit parasite sexual reproduction and development in the mosquito,
preventing onward transmission7. Design of a broadly protective malaria
vaccine has been hampered by several factors, including multiple parasite
life stages that express different antigens, extensive genetic diversity within
individual antigens targeted by vaccines, partial natural immunity that is

short-lived and non-sterilizing, and incomplete knowledge of immune
correlates of protection8. To date, very few malaria vaccine candidates have
been evaluated in clinical trials, with most demonstrating limited efficacy9,
including the first malaria vaccine approved for use by the World Health
Organization, RTS,S, which displayed only 36% efficacy in a Phase 3 trial
when given to children 5-17 months old as a primary series followed by a
booster dose10. Another recently approved vaccine, R21, showed an efficacy
of 71% in phase 1/2b11.

Malaria parasites are haploid in humans and briefly diploid in mos-
quitoes. Extensive genetic variation is generated through mutation during
mitotic reproduction in humans and by sexual recombination in the mos-
quito. The first P. falciparum genomewas published in 200212, but nearly 20
years later most vaccine development efforts have focused on a small
number of highly diverse vaccine candidates identified using traditional
vaccinology approaches that identify antibody targets in immune sera,
rather than a more comprehensive, genome-level approach. These highly
immunogenic candidates have typically evolved extensive genetic diversity
in response to immune pressure. Thus, many vaccines have displayed some
degree of allele-specific efficacy (including RTS,S)13–16, demonstrating
greater efficacy against parasites with target alleles matching those in the
vaccine formulation (i.e., vaccine allele-specific efficacy)8.
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Reverse vaccinology utilizes bioinformatics approaches to identify
pathogen antigens or epitopes that could be used as vaccine candidates17–19.
It was first proposed by Rino Rappuoli who screened theMeningococcus B
proteome to identify five antigens with bactericidal activities, which were
subsequently included in the licensed four-component MenB vaccine
(4CMenB, Bexsero®)20–23. Reverse vaccinology has since been used to iden-
tify vaccine antigens for other bacterial and viral pathogens24–29. The wealth
of systems data available for P. falciparum lends itself to the use of reverse
vaccinology to identify new malaria vaccine antigens, which may allow
identification of less immunodominant but more conserved antigens that
have beenmissed using traditional vaccinology approaches based strictly on
immunogenicity. There has been limited use of reverse vaccinology to
identify malaria-candidate antigens. Singh et al. 30 applied the concept to
identify candidate antigens with signal peptide and glycosylpho-
sphatidylinositol (GPI) anchor motifs while Pritam et al. 31 also used signal
peptide and GPI-anchor prediction tools along with T-cell epitope predic-
tion to identify P. falciparum epitopes. Both studies focused on a limited
number of protein or epitope properties. In contrast, machine learning in
reverse vaccinology does not require a priori assumptions about the
importance of specific criteria, and instead, “learns” protein propertiesmost
associated with vaccine potential based on known antigens.

Positive-unlabeled (PU) learning is applicable to many biological
problems where the labeling process is often expensive or time-consuming,
and only a small fraction of entities might be labeled29,32. Learning from the
labeled positives, PU learning identifies potential positives among the
unlabeled entities based on the properties of the positives33,34. This approach
has been used to identify genes associated with human disease based on
various data types, including human protein interaction data, gene
expression data, gene ontology, and phenotype-gene association data35, yet
to our knowledge, it has not been applied to identify candidate antigens. PU
learning is particularly attractive for P. falciparum, as ~40% of genes in the
genome encode proteins of unknown function36,37. This general vaccine
candidate antigen identification framework can be applied to other

pathogens, especially those having only a few known antigens identified and
less characterized, such as the second-most prevalent malaria parasite
species, P. vivax.

Here, wemodify canonical positive-unlabeled random forest (PURF)38

to distinguish proteins with vaccine potential (i.e., antigens) from non-
antigens, based onproperties of knownP. falciparum antigens, and rank the
candidates with probability scores. Variable importance is assessed to
understand the protein properties contributing most to identifying candi-
date antigens. The candidates are linked to other data types (e.g., gene
essentiality39, stage-specific single-cell transcriptomic data40–42, and proxi-
mity to the known malaria vaccine antigens), to allow further character-
ization and prioritization in subsequent vaccine development.

Results
Identification of potential P. falciparum candidate antigens
In this study, 52 known antigens were selected from the intersection of
the antigen sets obtained from the literature and from epitope infor-
mation from the Immune Epitope Database (IEDB)43, based on their
ability to elicit an immune response29. These 52 known antigens include
16 of the 19 P. falciparum antigens targeted by vaccine constructs that
have proceeded to clinical vaccine development44, and four
antigens–circumsporozoite protein (CSP), merozoite surface protein 5
(MSP5), 6-cysteine protein family (p230), and merozoite surface pro-
tein 5 (MSP5)–representing vaccine candidates from different parasite
life stages and with varying levels of genetic diversity45–48 (Methods),
were selected to serve as reference points for candidate antigen prior-
itization. A relational database was created to organize data assembled
and generated for the P. falciparum proteins (Fig. 1; Supplementary Fig.
1). The structural, proteomic, and immunological data were generated
using various bioinformatic programs (Methods and Supplementary
Data 1). We also retrieved genomic, transcriptomic, and functional
information from public databases such as PlasmoDB36. Additional
variables were created by combining variables from different data types.

Fig. 1 | Database schema of P. falciparum vaccine
target identification.The database is structured as a
collection of data tables here represented as nodes
with colors indicating different groups of tables. Part
of the tables in the database are listed as examples.
The lines of the hierarchical edge bundling plot show
the hierarchical relationships between tables. The
orders in the hierarchical structure are origin (root
node), group of tables, and data table. Tables with
the same type of relationship to the foreign table are
collapsed into one node. Data tables generated from
computational analyses are connected to sequence
(purple) and basic information (orange) tables with
gene accession identifiers.
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The 272 variables comprise 28 structural variables, 121 proteomic
variables, 116 immunological variables, and 7 genomic variables
(Supplementary Data 1, 2).

Training positive-unlabeled random forest models
We employed tree-based PU learning (PURF), an ensemble of individual
tree models. PURF incorporates a modified impurity measure (see Meth-
ods) that estimates the probabilities of the positives and negatives based on
observations in the tree node38. To evaluate the ensemble, we simulated fully
labeled data, and estimated the receiver operating characteristic (ROC)
curve, which was calculated using the probability scores (out-of-bag scores;
see Methods). The estimated ROC curve was then compared with ROC
curves calculated using the probability scores against the true labels and
using the PU labels (Supplementary Fig. 2). The estimatedROC curveswere
like those of true labels (Mann–Whitney, q = 0.06, n = 5), while the ROC
curves of PU labels were different from the others (q = 0.01 for both com-
parisons). This result demonstrates that even without the true label infor-
mation, the ROC curve may be recovered from the score distribution.

To select the positive level (hyperparameter for prior probability of
positive samples) of PURF, we trained with positive levels from 0.1 to 0.9.
The positive level of 0.5 shows the highest area under the estimated ROC
curve (AUROC= 0.98) (Supplementary Fig. 3). Proteins were ranked based
on probability scores, which is defined as the proportion of trees in the
ensemble predicting the protein tobe antigenic. The overall percentile ranks
(PRs) of the known antigens were highest for the ensemble with 0.1 positive
level (area under the ranking curve; AUC = 0.83), whereas all known anti-
gens were predicted correctly (explicit positive recall; EPR = 1) by the
ensembles with 0.8 and 0.9 positive levels (Supplementary Fig. 4). The AUC
and EPR of the ensemble with 0.5 positive level were 0.81 and 0.83,
respectively.

To improve the performance, we utilized a method like the synthetic
minority oversampling technique (SMOTE)49 to increase representation of
known antigens. The weighting made known antigens equally representa-
tive by duplicating those that are more distant from others in the variable
space, which increased classification performance. The estimated ROC
curve showed an increase in classification separability (AUROC= 0.99,
positive level = 0.5, Supplementary Fig. 5). The known antigens obtained a
higher percentile rank (Supplementary Fig. 6), and the EPR of the ensemble
with 0.5 positive level increased to 0.92.

Classification tree filtering using reference antigens
To utilize the random forest structure to prioritize candidate antigens, we
identified tree models that correctly predicted all reference antigens that
were in the out-of-bag set of the tree (those proteins not used to build the
tree). Trees that did not have reference antigens in the out-of-bag set or
incorrectly predicted any of the out-of-bag reference positives were
removed. PURF with tree filtering had an estimated AUROC of 0.99
(Fig. 2a). The evaluation of the 52 known antigens showed that 51 had
percentile rank >50 and the EPR was 0.94 (Fig. 2b). For further character-
ization, we selected the top 200 candidate antigens with a probability score
>0.94 because half of the known antigens had scores above this threshold.

To assess robustness to the inclusion of specific reference antigens, we
performed an iterative validation procedure by sequentially removing the
positive label from one of the 48 known antigens (excluding the four
reference antigens) from each iteration as an adversarial control50, con-
ducted variable spaceweighting, and retrained ourmodels. The results show
small mean differences in scores of the remaining known antigens before
and after the label removal (Fig. 2c), and there was no significant difference
between filtered and unfiltered ensembles (Mann–Whitney, p = 0.32, Sup-
plementary Fig. 7). The top 200 candidate lists from the 48 ensembles were
generated, and the cumulative numbers of candidates that agreed on 48, 47,
46 ensembles, and so on, are similar between the filtered and unfiltered
ensembles (Fig. 2d), demonstrating that the tree filtering procedure did not
affect the overall PURF structure in predicting candidate antigens.

To understand protein variables contributing to the identification of
the known antigens, we investigated the mean decrease in prediction
accuracy across all trees in the filtered ensemble with variable permutations.
All variables were used to identify antigen candidates, and the top ten most
important variables include one structural, one genomic and eight pro-
teomic variables (Fig. 3a). Comparisons of the variable values between the
known antigens and 52 random proteins predicted to be non-antigens by
tree-filtered PURF reveal that the known antigens contain fewer amino
acids with high polarizability (K, M, H, F, R, Y, W), comprise fewer amino
acids with high van derWaals volume (M,H, K, F, R, Y,W), and have fewer
hydrophobic amino acids (C, L, V, I, M, F, W) (Fig. 3b). Moreover, the
known antigens have fewer positively charged amino acids (K, R) and a
lower isoelectric point value (Fig. 3b). Known antigens also have a higher
secretory signal peptide probability, a higher number of non-synonymous
SNPs, and have higher flexibility and hydrophilicity for predicted epitopes
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Fig. 2 | Model evaluation and validation of positive-unlabeled random forest
models. a Score distributions of unlabeled proteins predicted by the tree-filtered
model. The putative positive (red) and negative (blue) distribution groups were
calculated byfitting a two-componentGaussianmixturemodel. A receiver operating
characteristic curve (ROC) was calculated based on the putative distributions, and
the area under the receiver operating characteristic curve (AUROC) was 0.99.
b Evaluation of known antigen scores predicted by the tree-filtered model. Points
represent known antigens. The x-axis shows the scaled ranks of the 52 known
antigens. The y-axis notes percentile ranks (PR) of known antigens in the set con-
taining all P. falciparum proteins. The dashed line indicates the 50th percentile rank.
Gradient colors show probability scores. The area under the ranking curve was 0.90.

c Distribution of mean differences in scores after known antigen label removal for
the final tree-filtered ensemble. Dots represent the 48 validation iterations. The box
plot shows median with first and third quartiles. The lower and upper whiskers
indicate 1.5× interquartile range from the first and third quantiles, respectively. The
gray dashed line conveys a zero-mean difference in scores. d Plot of overlapping
antigens across the top 200 candidate sets generated from the validationmodels. The
x-axis shows the number of validation models in reverse order, and the y-axis
indicates the number of candidate antigens in agreement with the corresponding
number of models. Line colors show data from non-tree-filtered (yellow) and tree-
filtered (red) validation models, respectively.
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(Fig. 3b). The importance of variables grouped by data categories showed
that the proteomic variables are most important in identifying known
antigens (Fig. 3c).

Proximity of top-ranked candidates to reference antigens
To understand how tree filtering assisted in prioritizing antigen candidates
based on the reference antigens, we examined the proximity space before
and after tree filtering. Proximity values are the proportion of times a pair of
proteins occur in the same terminal node of a tree model and represent the
similarity with respect to variables used in the model. The proximity was
converted to an Euclidean distance (smaller values indicatemore closeness)
and visualized using multidimensional scaling. The top candidate antigens
were clustered into three groups (Fig. 4). The probability scores of candidate
antigens in groups 1 and 2 increased after tree filtering (Supplementary Fig.
8), indicating that some candidates in groups 1 and 2 have been prioritized
into the top candidate list after tree filtering.

To study the relationships between the candidate and reference anti-
gens,we compared theEuclideandistances of the candidate antigens in each
group to each of the four reference antigens. The distances significantly
changed (FDR < 0.05) in all three groups after tree filtering. Comparing the
three groups, after tree filtering, group 3 had the farthestmedian distance to
the reference antigens, group 1 had the closest median distance to CSP,

MSP5, andP230, group2 is closest toRH5(redpoints in SupplementaryFig.
9). ForRH5,MSP5, andP230, both groups 1 and 2moved closer to the three
reference antigens (blue and purple points in Supplementary Fig. 9) and
group 3 moved further away after tree filtering (dark orange points in
Supplementary Fig. 9), suggesting that reference antigens may have less
effect on prioritizing group 3 antigen candidates. Overall, RH5, MSP5, and
P230 may have positive influences on the prioritization of group 1 and
group 2 antigen candidates. Interestingly, the median distances of group 2
antigen candidates are less than 0.5 to all reference antigens (red points in
Supplementary Fig. 9), suggesting that over half of the trees in PURF agreed
on the protein similarities between group 2 and all four reference antigens.

Variable importance of candidate antigen groups
Permutation-based variable importance analyses were conducted for each
of the three candidate antigen groups. The shared importance variables in
identifying the candidates as antigens for the three groups includea higher
number of non-synonymous SNPs, higher flexibility and hydrophilicity for
predicted epitopes, lower probability of mitochondrial subcellular locali-
zation, and a smaller number of hydrophobic amino acids (Supplementary
Fig. 10). The shared important properties of candidate antigens in the three
groups were similar to the properties of known antigens. Among the three
groups, group 2 had the most similar important variables as known
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Fig. 3 | Positive-unlabeled random forest model interpretation based on known
antigens. a The left panel displays permutation-based variable importance analysis
of the final tree-filtered model. The x-axis shows the mean decrease in accuracy
(scaled by the standard error) of the known antigen set (n = 52) after permuting the
variables for each tree in the model. The y-axis lists the tenmost important variables
in predicting the known antigens. The property groups of the variables are noted by
colors. The right panel shows a summary of variable values of the known antigens
(red) and randomly selected proteins (n = 52; blue) that are predicted as non-
antigens by the final tree-filtered model. The ten most important variables obtained
from the permutation-based variable importance analysis are shown. Points

represent proteins. Boxplots show median with first and third quartiles, and the
whiskers indicate the 1.5 interquartile range extended from the first and third
quartiles. Numbers on the right show adjusted p-values calculated using two-sided
Mann–Whitney tests. Variable values were normalized based on the entire data set.
b Permutation-based group variable importance analysis. Variable importance was
calculated on the known antigens, and the decrease in accuracy after variable per-
mutation was recorded. Variables in the same property groups were permutated
together. The mean decrease in accuracy was standardized using the standard error
computed across all trees in the model.
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antigens. The secretory signal peptide probability, which was ranked ninth
in the important variable list for known antigens, was ranked 83rd, 226th,
and 83rd in the results of groups 1, 2, and 3, respectively, suggesting that a
secretory signal peptidemay be important in classifying proteins as antigens
(probability score ≥ 0.5), but is not as critical for a higher probability
score (≥ 0.9).

In terms of top-ranked variables, the number of non-synonymous
SNPs, epitope flexibility, and epitope hydrophilicity were ranked among the
top three for groups 1 and 2, and among the top four for group 3 (Sup-
plementary Tables 1–3). The median number of non-synonymous SNPs is
lower and with a smaller variance in the distribution for group 2 compared
to groups 1 and 3 (Supplementary Fig. 10). The predicted number of B-cell
epitopes in outer membrane regions was ranked as the most important
variable for group 3, whereas it was the least important among the 272
variables for groups 1 and 2 (Supplementary Table 3).

Characteristics of identified potential vaccine antigen targets
We applied gene ontology (GO) enrichment analysis to assess annotation-
associated properties of candidate antigen groups compared to the back-
ground of the P. falciparum proteome. Group 1 was significantly enriched
for genes encoding proteins involved in cell-cell adhesion, cytoadherence to
the microvasculature, erythrocyte aggregation, and antigenic variation.
Similar enriched GO terms were observed for group 3 (Table 1). Group 2
candidate antigenswere enriched in the parasite nucleus and cytoplasm and
not associated with antigenic variation (Table 1), suggesting these potential
antigens may be less immunogenic or less exposed to the host immune
response. Further examination of the gene products of group 1 revealed that
85% of the candidates are erythrocyte membrane proteins (PfEMP1, Sup-
plementary Data 3), whereas 36% and 26% of candidates in groups 2 and 3,
respectively, are conserved proteins with unknown functions (Supple-
mentary Data 3).

We filtered the candidate antigen groups by gene essentiality, where
genes withmutagenesis index score < 0.5 were retained39.We examined the
expression of the genes encoding the remaining candidate antigens in dif-
ferent P. falciparum life stages based on single-cell transcriptomic data from
the Malaria Cell Atlas40–42. Of the group 1 candidates remaining after
essentiality filtering, one was expressed mainly in the blood stage, and the
other was expressed in all life stages, with higher expression levels in a larger
portion of cell populations in the blood and gametocyte stages (Supple-
mentary Fig. 11). For groups 2 and 3, most candidate antigen genes were

expressed primarily in the blood, gametocyte, and ookinete stages, and a
smaller number of groups 2 and 3 candidateswere expressed in all life stages
(Supplementary Fig. 11).

Discussion
Over the past decades, various malaria vaccine candidates have been
developed and proceeded to clinical trials. Nevertheless, a highly efficacious
and long-lastingmalaria vaccine againstP. falciparum is still an unmet need.
We are now in the second wave of malaria vaccine development51, with the
goal of selecting vaccine antigens with potential to elicit an enhanced
immune memory response and a protective efficacy of at least 75% against
clinical malaria52. With the advancement of genome sequencing of Plas-
modium and bioinformatics tools, reverse vaccinology has become a viable
vaccine development approach for this complex organism.

Reverse vaccinology has been applied using sequential filtration of
protein properties or with machine learning, both of which have identified
potential new vaccine antigens for Plasmodium species, but with some
limitations31,53. Approaches based on sequential filtration lack standardized
filtering criteria, with thresholds often selected based on empirical evidence,
and could be difficult to generalize when there are many protein
variables29,54. In P. falciparum, there are only a small number of known
antigens that can be labeled as positives, and non-antigens are difficult to
identify from the literature or based on reference genomes with incomplete
annotation. One study using machine learning algorithms to predict
potential vaccine antigens in eukaryotic pathogens only examined seven
protein variables and did not consider genome properties such as sequence
complexity and genetic diversity53, both of which are relevant to malaria
vaccine development and have impacted the efficacy of first-generation
malaria vaccines13–16. Additionally, this study examined only a relatively
small set of threePlasmodium proteomes (73 antigens and 51non-antigens,
fromP. falciparum,P. yoelii yoelii, andP. berghei). In contrast,weperformed
comprehensive analyses on 5393 P. falciparum proteins and computed 272
protein variables on each. To ensure a high-quality PU data set of known P.
falciparum antigens, we took the intersection of antigen sets curated from
the literature and IEDB43.

PU learning takes advantage of unlabeled data and improvesmodeling
when only a small portion of entities are labeled as positive33,55. In this study,
we chose random forest56 as the basis for our PU learning because of its high
predictive accuracy, high interpretability, and insensitivity to outliers and
predictive variable scales57. Additionally, PURF is amenable to the

Fig. 4 | Clustering of top 200 candidate antigens
based on proximity measured from tree-
based model. First two dimensions of UMAP are
shown. Top 200 candidate antigens from the final
tree-filtered model were grouped based on k-means
clustering. Points represent top 200 candidate anti-
gens in three groups, 48 known antigens (light cyan),
and four reference antigens (yellow; protein names
noted by text).
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Table 1 | Significantly enriched gene ontology termswith false discovery rate (FDR) <0.05 in gene ontology enrichment analysis
of candidate antigen groups with the background proteome of P. falciparum 3D7

GO term Number of genes −Log10FDR

Group 1 (61 candidates) Biological process Cell-cell adhesion 45 4.12

Cytoadherence to microvasculature, mediated by symbiont protein 43 3.55

Modulation by symbiont of host erythrocyte aggregation 42 3.53

Antigenic variation 43 3.50

Cellular component Host cell plasma membrane 44 4.74

Infected host cell surface knob 44 4.74

Integral component of membrane 54 3.91

Maurer’s cleft 5 1.34

Molecular function Cell adhesion molecule binding 44 4.45

Host cell surface receptor binding 51 3.71

Protein binding 8 2.65

Group 2 (83 candidates) Biological process Chromatin remodeling 4 3.95

Regulation of transcription, DNA-templated 7 3.19

Positive regulation of transcription, DNA-templated 2 1.53

Cellular component Nucleus 45 3.57

Cytoplasm 18 3.51

Membrane 9 2.87

Extracellular region 3 2.08

Chromosome 2 1.44

Rhoptry neck 2 1.44

P-body 2 1.34

Vesicle 2 1.34

Molecular function DNA-binding transcription factor activity 7 4.65

ATP binding 12 4.06

DNA binding 9 4.06

Sequence-specific DNA binding 6 4.06

Protein binding 21 3.90

Actin binding 3 2.52

Chromatin binding 3 2.19

Protein phosphatase regulator activity 2 2.01

Histone-lysine N-methyltransferase activity 2 1.69

Calcium ion binding 3 1.67

Group 3 (56 candidates) Biological process Cell-cell adhesion 6 4.35

Entry into host 5 3.54

Protein phosphorylation 4 2.09

Response to xenobiotic stimulus 4 1.81

Cytoadherence to microvasculature, mediated by symbiont protein 4 1.46

Modulation by symbiont of host erythrocyte aggregation 4 1.41

Cell motility 2 1.37

Antigenic variation 4 1.37

Cellular component Integral component of membrane 47 4.26

Nucleus 13 4.26

Membrane 16 4.23

Infected host cell surface knob 4 3.56

Host cell plasma membrane 5 2.72

Apicoplast 5 1.79

Rhoptry neck 2 1.79

P-body 2 1.66

Cytoplasm 7 1.43

Molecular function Heparin binding 4 3.84

Host cell surface receptor binding 7 3.84

Cell adhesion molecule binding 4 3.29

Protein kinase activity 4 2.36
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modifications we developed here. Permutation-based variable importance
analysis is naturally derived from the random forest architecture and
imparts a quantitative measure of the variable importance56. Moreover,
many studies involving machine learning analyses focus primarily on the
model accuracy and develop complex models that are hard to interpret.
However, it is critical to understand the relationships learned by the model
andwhether they are biologicallymeaningful50,58. Here, the interpretation of
PURF provides helpful insights on how the models have learned in dis-
tinguishing known antigens from non-antigens, and how the previously
unknowncandidate antigenswere identified.AlthoughPUlearning enabled
us to fully harness the entire P. falciparum proteome, it is a data-driven
approach that could be affected by the known antigens provided. Thus, in
this study, efforts were made to ensure the quality of the known antigens.
Further inclusion of more high-quality known antigens may improve the
model performance.

The approach described in this study identified previously unknown
vaccine candidate antigens for P. falciparum vaccine development. The
research scheme provides a flexible framework, in which the candidate
antigens can also be prioritized using a different set of reference antigens
selected using other criteria, while not affecting the overall PURF structure.
Candidate antigens identified in this study have been filtered based on gene
essentiality, where mutations in these genes could affect parasite viability,
and thus may help reduce parasite escape from vaccine-induced immune
responses39. Most candidate antigens were expressed predominantly in a
single life stage, which is consistent with the observations of previous
studies59. For instance, group 3 antigensweremostly expressed in blood and
sexual stages, which were associated with a larger number of B-cell epitopes
in the outer membrane regions. However, some candidates were expressed
in multiple life stages, which may make them attractive vaccine antigens
because they would target multiple life stages. An interactive summary
report of the candidate antigens identified is available online (https://mrp-
bioinformatics.github.io/malaria_antigen_candidates/ and in Supplemen-
tary Data 3). The information about the closest known antigens to the
candidates and single-cell gene expression is also included. For future stu-
dies, furtherfiltering criteria, such as isoelectric point,molecularweight, and
folding propensity, may be applied to select candidate antigens for hetero-
logous protein expression in other species systems to perform functional
assays60,61.

Our approach exploits PU learning in reverse vaccinology to identify
potential P. falciparum vaccine candidate antigens for future vaccine
development, whichdoes not assumefiltering criteria of protein variables, is
driven by the proteome, and leverages a small set of known antigens. The
alteration of the model ensemble based on the reference antigens aids in
candidate antigen prioritization. In response to the shift in species con-
stitution in malaria-endemic areas, the developed framework can be
expanded to P. vivax and other Plasmodium species that cause human
malaria62. The methodology can be further tailored and applied to other
disease pathogens. More broadly, beyond vaccine development, the study
may also inspire other scientific research areas, if there is only a relatively
small amount of evidence collected to guide the prioritization of the study
entities.

Methods
Known antigen protein collection
Known antigens were selected based on literature and epitope information.
Covidence (www.covidence.org), a web-based application tool designed for
systematic review and streamlined screening of the literature, was used to
select, and extract literature coveringmalaria vaccine research.Our goal was
to look for all themalaria vaccine candidates that have been already reported
in the literature. The search terms include the following: “malaria vaccine”,
“malaria vaccine candidate”, “malaria vaccine antigen”, “malaria vaccine
protein”. In brief, the search covered papers and documents having both
malaria and vaccine in any of its sections. The search generated a set of
articles that discuss malaria vaccine candidates, rather than a list of each of
the candidates. Overall, our search produced 7415 articles in total. We then

manually examined these papers to identify proteins used asmalaria vaccine
candidates. Non-redundant candidates were selected based on gene names,
GenBank ID, or aliases.

The known antigens selected based on the epitope information
were extracted from the PlasmoDB36 immunology section. Epitopes
from the Immune Epitope Database (IEDB)43 are mapped to the Plas-
moDB proteins with exact string matching; at the same time, the cor-
responding GenBank proteins from IEDB were aligned to PlasmoDB
proteins using BLAST63. The similarity threshold of a best hit is percent
identity ≥97%.We selected proteins from PlasmoDB as known antigens
if the protein has a similarity score larger than or equal to the similarity
threshold, or having all listed epitopes aligned exactly to the PlasmoDB
protein sequence. The set based on the literature contained 177 known
antigens, and the set based on the epitope information had 373 known
antigens. The final known antigen list was an intersection of the two sets
and included 52 antigen proteins.

The set of 52 known antigens includes 16 of the 19 P. falciparum
antigens targeted by vaccine constructs that have proceeded to clinical
vaccine development44. Based on the criteria above, Pf11-1
(PF3D7_1038400), LSAP2 (PF3D7_0202100), and VAR2CSA
(PF3D7_1200600) were not among the known antigens; however,
VAR2CSA was among the top 200 predicted antigens resulting from the
analysis). Four of the known antigens were selected as reference antigens to
help better understand our models. Circumsporozoite protein (CSP) is a
surface protein expressed during the pre-erythrocytic stage and is the active
component of the WHO-approved RTS,S and R21 vaccines64,65. Reticulo-
cyte binding homolog 5 (RH5) is expressed in the blood stage, functions as
an invasion ligand, and is currently under malaria vaccine development66,67.
Merozoite surface protein 5 (MSP5) is expressed in sporozoites, late liver
stages, and in blood stage parasites, and has recently been shown to elicit
antibodies strongly associated with protection following vaccination with
PfSPZ sporozoite vaccines68. P230, in the 6-cysteine protein family, is
expressed and located on the surface of gametocytes69. It is a leading
transmission-blocking vaccine candidate shown to induce serum functional
activity in humans70, including in a recent Phase 1 trial in Mali71. These
reference antigens display a range of genetic diversity, as measured by
percentile rank of SNPs per Kb coding sequence over P. falciparum pro-
teome (P230 0.39, MSP5 0.43, RH5 0.52, CSP 0.94).

Collection of Plasmodium data and bioinformatic analyses
P. falciparum 3D7 genome information and protein sequences were col-
lected fromPlasmoDB36 release 43 (2019-04-25). An in-house database was
constructed using MariaDB version 10.3.22 (https://mariadb.com/). The
data tables are connected via table identifiers or gene accessions. Part of the
Chado schema from the Generic Model Organism Database72 was inte-
grated into the database design to eliminate redundancies. The database
contains eight categories of tables, including basic information, sequence
information, genomic, transcriptomic, functional, structural, proteomic,
and immunological tables. See Supplementary Data 1 for detailed infor-
mation on variable name, data type, program or tool, description, collection
method, collection date, and source.

In brief, the reference genome, coding sequences (CDS), and protein
sequences were directly downloaded from PlasmoDB36. Proteins with stop
codons within the sequence or derived from pseudo genes were removed.
Protein sequences having “X” symbols were also removed. Selenocysteines
in selenoproteins were replaced with cysteines for downstream bioinfor-
matic analyses. The preprocessing resulted in 5393 P. falciparum proteins.
General information including genome, coding sequence locations, protein
sequences, and sequence ontology terms were stored in the basic informa-
tion and sequence information database tables.

For genomic data tables, single nucleotide polymorphisms (SNPs)
discovered from next-generation sequencing were directly downloaded
from PlasmoDB36 under the genetic variation section (365 genomes col-
lected; 2 Central Africa, 3 Central America, 12 East Africa, 1 Northeast
Africa, 174 South America, 1 Southeast Africa, 7 Southeast Asia, 163 West
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Africa, 1 Western Europe, and 1 of unknown geographic origin). The
measures of SNPs include the total number of SNPs, number of non-
synonymous SNPs, number of synonymous SNPs, number of nonsense
SNPs, number of non-coding SNPs, ratio of non-synonymous to synon-
ymous SNPs, and number of SNPs per kb coding sequence. Gene essenti-
ality measured from saturation-level mutagenesis was obtained from the
literature39. Transcriptomic data included DNA microarray73 and bulk
RNA-seq74–77 data at various P. falciparum life stages retrieved via Plas-
moDB, and single-cell RNA-seq data from the Malaria Cell Atlas40–42.
Functional data including gene ontology terms were downloaded directly
from PlasmoDB36 as a GAF file.

For structural data, transmembrane helices were predicted using the
TMHMM version 2.0 web server (http://www.cbs.dtu.dk/services/
TMHMM/)78,79. Sequence complexity was analyzed using the SEG80. Beta-
turns, surface accessibility, and flexibility were analyzed using IEDB Anti-
body Epitope Prediction version 3.081–83. By combining the results from
TMHMM and SEG, new protein variables of sequence complexity in the
outer-membrane (non-cytoplasmic), transmembrane, and inner-
membrane (cytoplasmic) regions were generated.

For proteomic data, subcellular localizations were predicted using the
CELLO version 2.5 web server (http://cello.life.nctu.edu.tw)84. Malarial
adhesins/adhesin-like proteins were predicted using the MAAP web server
(http://maap.igib.res.in/index.php)85. Physicochemical properties were
analyzed using the R packages Peptides version 2.4.186 and protr version
1.6.287, and IEDB Antibody Epitope Prediction version 3.088. Glycosyl-
phosphatidylinositol (GPI)-anchored proteins were predicted using the
PredGPI web server (http://gpcr.biocomp.unibo.it/predgpi/pred.htm)89.
Protein signal cleavagepredictionwas analyzedusing the SignalPversion5.0
web server (http://www.cbs.dtu.dk/services/SignalP/index.php)90. Protein
solubility information was obtained using the protein-sol abpred91. N- and
O-linked glycosylation sites were predicted using GlycoEP92. The results of
glycosylation sites were combined with the transmembrane predictions to
generate additional variables of glycosylation sites in the outer-membrane,
transmembrane, and inner-membrane regions. Similarity to human pro-
teins was analyzed using BLASTP version 2.8.1+93.

For immunological data, T cell epitopes were predicted using the
PREDIVAC web server (http://predivac.biosci.uq.edu.au/cgi-bin/
population.py)94, which predicted epitopes specifically for sets of HLA
class II allelic variants from ten population regions. B cell epitopes were
analyzed using BepiPred version 2.0, BepiPred version 1.0, and
ABCpred95–97. Additional variables of B cell epitopes in the outer-mem-
brane, transmembrane, and inner-membrane regions were computedusing
the transmembrane information from TMHMM. Cytotoxic T cell epitopes
were analyzedusingCTLPred98.Chemokine inducer epitopeswere analyzed
using IL-10Pred99. Transporter associated with antigen processing (TAP)-
binding peptides were predicted using TAPPred100.MHC class I and class II
epitopes were predicted using IEDB MHC-I Binding Predictions version
2.22.3101 and IEDB MHC-II Binding Predictions version 2.22.3102, respec-
tively. Epitope antigenicity was analyzed using IEDB Antibody Epitope
Prediction version 3.0103, and epitope immunogenicity was predicted using
IEDB Class I Immunogenicity version 1.1104. In general, the epitope infor-
mation was summarized for each protein with the total number of epitopes
passed the default threshold, and the maximum, mean, and minimum
scores of the epitopes.

Data set assembly
The data set contains the predictor variables, and the response variable
labels. The variables were assembled by retrieval from the database. Antigen
labeling information was added as the response variable, where proteins
selected as known antigens were labeled as positive and the other proteins
were unlabeled. The number of proteins was 5393, and the number of
known antigens as labeled positives was 52. In total, 272 predictor variables
were retrieved from the database (Supplementary Data 2). All predictor
variables are of numeric type, and missing values in the variables were
imputed by replacement with variable medians.

Positive-unlabeled simulation
The simulated data were generated using the function make_classifica-
tion from the Python scikit-learn package105. The number of proteinswas
5000 and the number of predictor variables was 300, comprising 250
informative variables, 40 redundant variables, and 10 repeated variables.
The response variable contained two classes (positive and negative) and
was treated as true labels. Because the P. falciparum data set had 52
labeled positives (known antigens) out of 5393 proteins, the data set was
99% unlabeled. To convert true labels to positive-unlabeled (PU) labels,
a regular random forest classifier with 1000 trees was trained to obtain
probability (out-of-bag) scores for all proteins. We then randomly
selected 50 proteins that were predicted to be positive by the regular
random forest. We retained the positive labels of these 50 proteins and
made the remaining 4950 proteins unlabeled.

Positive-unlabeled random forest algorithm implementation
The positive-unlabeled random forest (PURF) framework is based on a
modified splitting criterion called positive-unlabeledGini index (PUGini)38,
which is derived from the Gini criterion (Gini = 1 –∑j p2j , where pj is the
probability of being classified as a class j)106. The new splitting criterion
estimated probabilities of positive and negative proteins according to the
numbers of labeled positives and unlabeled proteins in the tree node. The
probabilities of positive (p1) and negative (p0) proteins were respectively
estimated by the following equations38,107, p1 =min(|POSnode| × PosLevel ×
|UNL | , 1) | POS| |UNLnode | , and p0 = 1− p1, where |POSnode| and
|UNLnode| are, respectively, the numbers of labeledpositives and unlabeled
proteins in the node, and |POS| and |UNL| are, respectively, the numbers of
labeled positives and unlabeled proteins in the data. Because PURF is based
on random forest56, it inherits the properties of robustness to outliers and
variable errors, insensitivity to monotonic transformation of variables, and
high predictive power. In this study, we implemented the PURF algorithm
by extending the ensemble and tree modules in the Python scikit-learn
package105 and developed a lightweight Python package. The framework
proposed by Li and Hua38 was slightly modified where the positive level
(PosLevel) has become a hyperparameter that can be explicitly tuned by the
user.We also added class functions that take tree weights as an argument to
calculate probability scores with the tree filtering procedure. For the initial
modeling, positive levels were set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
The forest size was 100,000 trees.

Positive-unlabeled random forest evaluation
Because in a PU learning problem, we do not know the true state for the
unlabeled proteins, we cannot calculate the traditional evaluation metrics
such as those involving true negative and false positive rates. Further, the
metrics based on PU labels could be affected by the proportion of labeled
positives108. Thus, in this study we used the following two criteria, which
utilize the probability score distribution fromPURF and the percentile rank
of labeled positives, respectively, to examine the model performance.

The first criterion involves estimating the putative true and false
positive rates from the probability score distribution to calculate the receiver
operating characteristic (ROC) curve. As the probability score distribution
of unlabeled proteins is bimodal, the distribution can be described using a
two-component mixture with the formula: h(x) = πh1(x) + (1 − π)h0(x),
where π ∈ (0,1) and x ∈ X, X being the set of all possible proteins, h1 is the
score distribution of putative positive proteins, and h0 is the score dis-
tribution of putative negative proteins. In this study, the two-component
Gaussianmixture was computed using the R packagemixR, version 0.2.0109,
and the areaunder the receiver operating characteristic curve (AUROC)was
calculated using the R package pracma, version 2.3.8110.

The second criterion calculates the percentile rank of labeled positives
(known antigens) among all protein proteins based on the probability
scores. The criterion also reports the proportion of labeled positives that are
correctly predicted (explicit positive recall; EPR)55,111. The area under the
percentile rank curve was computed using the R package pracma, version
2.3.8110.
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Variable space weighting
Because only ~1% of the data were labeled as positive, the scarcity of the
labeled positivemay notwell represent the positive (antigen) population.
To make all known antigens equally representative for learning the
antigen properties, a variable space weighting procedure was performed
before training. A vector of variable medians was generated according to
the variable set of the known antigens. The vector represents the center
point112, which is a generalized geometric median in higher-dimensional
data, of the known antigens in the variable space. The Euclidean distance
between each known antigen and the center point was then calculated.
The distances were scaled to rounded integer values from 1 to 10. A new
data set was generated by duplicating the known antigens with the
transformed distances. The number of labeled positives after variable
space weighting was 122.

Ensemble constituent filtering
The treefilteringwas conductedusing four selected reference antigens (CSP,
MSP5, P230, RH5) to prioritize top-scored unlabeled proteins. To select
trees that correctly predicted the reference antigens in the out-of-bag set,
trees having no references, or which incorrectly predicted any of the out-of-
bag antigens were removed, resulting in 74,089 trees filtered from the ori-
ginal 100,000 trees. The probability scores were recalculated using the
function _set_oob_score_with_weights, where the removed trees were
assigned with a weight of zero. The resulting probability scores are available
in Supplementary Data 4.

Positive-unlabeled random forest validation
Known antigens, excluding the four reference antigens, were converted to
unlabeledproteins iteratively. For eachof the 48 iterations, a variable-space-
weighted data set was generated, and an ensemblewith a positive level of 0.5
determined through hyperparameter tuning and 100,000 trees was trained.
The model was subsequently processed using the ensemble constituent
filtering procedure. The probability scores of the remaining known antigen
predicted by both unfiltered and filtered models were recorded. The dif-
ferences in scores compared to the ensembles with no antigen label removal
were calculated, and the mean of these differences were then computed for
each iteration. Finally, the mean differences in scores from unfiltered and
filteredmodels were compared using a two-sided pairwise Mann–Whitney
test. Additionally, the top 200 unlabeled proteins ranked based on prob-
ability scores were selected for each validation model, and the number of
proteins identified in n, n� 1, n� 2,… rank lists were reported (n = 48).
The validation results can be found in Supplementary Data 5, 6 and Sup-
plementary Fig. 7.

Candidate antigen clustering and comparisons
To calculate the proximity matrix56 for the final tree-filtered forest with
74,089 trees, a matrix was computed using the Python function apply. The
matrix is symmetric with rows and columns corresponding to proteins, and
a cell value of 1 indicating that the paired proteins end up in the same
terminal nodes of a tree. The proximity matrix was then computed by
dividing the number of trees for which the paired proteins were in the out-
of-bag set. The proximity matrix was converted to a Euclidean distance
matrix by subtracting the proximity value from 1. The distance matrix was
further converted to a (5393 – 1)-dimensional space using multi-
dimensional scaling (MDS) with the R function cmdscale. The variance
explained for each dimension was calculated by dividing the eigenvalue by
the sum of all positive eigenvalues.

The top 200 candidate antigens were selected from the final ensemble.
A k-means clustering analysis was performed on the subset of the multi-
dimensional data set containing the top200candidate antigens.To select the
optimal number of clustering groups, theGap statistic113 with the Tibshirani
criterion114, Silhouettes115, and Elbow (or total within sum of square)
methods were used. The number of clusters selected by the three methods
were 3, 2, and 3, respectively. Thus, the top 200 candidates were clustered
into three groups, and visualized along with the known antigens and

reference antigens on the first two dimensions of the uniform manifold
approximation and projection (UMAP)116 matrix.

For the three candidate antigen groups, we quantified three mea-
sures comparing candidate antigens between non-tree-filtered and tree-
filtered ensembles: 1) probability scores; 2) Euclidean distances from the
candidate antigens to each of the four reference antigens; and 3) differ-
ences in distances. For these comparisons, we used multiple pairwise
Mann–Whitney tests (probability scores and Euclidean distances), and
Mann–Whitney test (differences in distances), with p values adjusted by
the Benjamini–Hochberg method117.

Variable importance analyses
Permutation-based variable importance56 was calculated for the 52 known
antigens, 61 group 1 antigen candidates, 83 group 2 antigen candidates, and
56 group 3 antigen candidates. For each tree in the forest, the prediction
accuracy was recorded for the out-of-bag target proteins (e.g., the 52 known
antigens). For each of the 272 variables, the variable values were permuted
for all 5393 proteins, the tree was then used to predict the response of the
permuted data set, and the prediction accuracy for the out-of-bag target
proteins was calculated. The difference in prediction accuracy before and
after variable permutation was recorded for each variable permutation.
After iterating through all trees in the forest, the results from each tree were
weighted according to ensemble constituent filtering (filtered trees have a
weight of zero), and the weighted average decrease in accuracy and the
corresponding standard error were calculated for each variable across all
trees. The final mean decrease in accuracy was scaled by dividing the values
by the standard error. For the importance analysis for variables grouped by
data categories, the variables were grouped based on data properties
(genomic, structural, proteomic, and immunological).When calculating the
importance of each data category, the grouped variables were permuted
together, and the decrease in prediction accuracy was measured after
permutation.

Variable value comparisons of top important variables
To compare variable values, a set of non-antigens predicted by thefinal tree-
filtered ensemble with the same size as the target proteins (known antigens
or candidate group antigens) were randomly selected. The variable values of
the target proteins and randomly selected non-antigens were compared
using a two-tailed Mann–Whitney test for all 272 variables. The p-values
were adjusted for multiple tests using the Benjamini–Hochberg
procedure117. The variable values were normalized to be between 0 and 1
based on the original data setwith 5393proteins for better visualization. The
top ten most important variables based on the permutation-based variable
importance analysis were visualized.

Gene ontology enrichment analysis
Candidate antigen groups were analyzed separately using the function
GOEnrichmentStudyNS in the GOATOOLS Python package118. The GAF
files containing associated gene ontology terms of P. falciparum 3D7 genes
were retrieved from PlasmoDB36 release 59 (2022-08-30). The directed
acyclic graphfile of geneontologywasdownloaded from theGeneOntology
website (http://geneontology.org/docs/download-ontology/)119,120. The
argument propagate_counts was set to false for more conservative results.
The p-values generated from multiple Fisher’s exact tests were adjusted
using the Benjamini–Hochberg method (or false discovery rate; FDR)117.
The significance cut-off was set at 0.05.

Candidate antigen characterization
Candidate antigens in eachof the three groupswere furtherfiltered basedon
gene essentiality that measured from saturation-level mutagenesis of P.
falciparum; the threshold of MIS < 0.5 was chosen as described in the ori-
ginal paper39. After filtering, there were 2, 26, and 14 candidates in group 1,
group 2, and group 3, respectively. The candidate antigens were further
characterized using the single-cell transcriptomic data from theMalariaCell
Atlas40–42 that contained 12 life stages, including five sporozoite stages, three
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blood stages, three gametocyte stages, and one ookinete stage. The gene
counts were normalized by size factors and log2-transformed. The pro-
portion of cells at each stage having gene counts larger than zero, and the
median and mean gene counts in the cell populations were reported. Fur-
ther, the closest reference antigen to each candidate antigen based on the
proximity matrix was identified. The final data set contained probability
scores, clustering groups, gene products fromPlasmoDB36 release 59 (2022-
08-30), closest reference antigen and the corresponding Euclidean distance.
See Supplementary Data 3 for detailed information.

Statistical analyses
R version 4.2.1 (2022-06-23) and RStudio were used to perform statistical
analyses. For comparing the scores and Euclidean distances of antigen
proteins and candidate antigens frommodelswithorwithout treefiltering, a
pairwise two-tailed Mann–Whitney test was used. For comparisons of
variable values between target proteins (known or candidate antigens) and
randomly selected non-antigens, or comparisons of difference in distances
across the three candidate antigen groups, a regular two-tailed Mann-
Whitney test was conducted. Where appropriate, the p-values for multiple
tests were adjusted using the Benjamini–Hochberg procedure117.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The database file, raw data of all figures and tables, and the research note-
book can be found in an open-source repository (https://doi.org/10.13016/
me1l-1ahr). The interactive candidate antigen table is also available online at
(https://mrp-bioinformatics.github.io/malaria_antigen_candidates/).

Code availability
The implementation of the positive-unlabeled random forest algorithm is
available as a Python package on GitHub (https://github.com/
RTChou/purf).
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