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Biomedical research delves deeply into understanding individual health and disease

mechanisms. Recent advancements in technologies have further transformed the field with

large-scale data sets, enabling data-driven approaches to identify important patterns and

relationships from large data sets. However, these data sets are often noisy and unstruc-

tured. Moreover, missing values and high dimensionality further complicate the analysis

processes aimed at yielding meaningful results. With examples in ocular diseases and

malaria, this dissertation presents novel strategies employing machine learning to tackle

some of the challenges in biomedical research.

In ocular diseases, sustained ocular drug delivery is critical to retain therapeutic lev-

els and improve patient adherence to dosing schedules. To enhance the sustained delivery

system, we engineer peptide sequences as an adapter to impart desired properties to ocular

drugs. Specifically, we develop machine learning models separately for three properties–



melanin binding, cell-penetration, and non-toxicity. We employ data reduction techniques

to reduce the number of features while maintaining the machine learning model perfor-

mance and apply interpretable machine learning techniques to explain model predictions

on the three properties. Experimental validation in rabbits show two-fold increase in drug

retention time with the selected peptide candidate. The developed machine learning frame-

work can be further tailored to engineer other properties in molecular sequences with a wide

variety of potential in biomedical applications.

Malaria is an infectious disease caused by protozoan of the genus Plasmodium and

has been a burden in global health. Developing malaria vaccines is challenging due to the

diversity in parasite antigen sequences, which may lead to immune escape. To facilitate the

vaccine development process, we leverage the wealth of systems data collected from various

sources. For facile data management, a database is constructed to store the structured

data processed from the results of the bioinformatics tools. Due to the small fraction of

Plasmodium proteins labeled as known antigens, and the remaining proteins unknown of

being antigens or non-antigens, a positive-unlabeled machine learning method is applied

to identify potential vaccine antigen candidates. Beyond malaria, our approach provides a

promising framework for identifying and prioritizing vaccine antigen candidates for a broad

range of disease pathogens.
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1



Chapter 1: Introduction

1.1 Background

The advancement of biological and computational technologies has enabled the gener-

ation of large and complex data in biological sciences research, and has promoted the broad

application of machine learning in various biomedical domains over the past decades [1,2].

As the volume of data increases, multiple research fields gradually transitioned from tradi-

tional, model-focused approaches, to approaches that are more data-driven [3]. However,

challenges emerge when extracting meaningful patterns and relationships from the large

amount of data. Machine learning, including both statistical methods and computational

algorithms, aims at learning relationships among data, which can gain important insights

from complex and large-scale data by computing the underlying and inherent structures

within a data set. However, in biomedical application, there is a wide variety of biological

data types, such as genome sequences, gene expressions, and molecular structures [2]. Be-

cause of such diversity, the selection of representative features from the high-dimensional

data set and the usage of machine learning algorithms are usually problem-specific [4].

Moreover, the rapid growth of data could lead to a lack of substantial labeling, hamper-

ing the model performance due to insufficient information [5]. Therefore, it is critical to

develop adaptive and advanced strategies to solve the biomedical research problems more
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effectively and efficiently.

The dissertation delves into two types of biomedical problems: sustained ocular drug

delivery and malaria vaccine antigen identification. This dissertation introduces machine

learning-based platforms that can be further extended to various other biomedical appli-

cations. In the research domain of sustained ocular drug delivery, patient adherence may

be enhanced through maintaining the drug therapeutic levels in the eye. Utilizing melanin

residing in the pigmented tissues in the eye, drugs with melanin binding and cell penetra-

tion properties can be stored and slowly released from the depot. To impart the desired

properties to drugs, peptides, which are short sequences of amino acids, can be used as an

adapter and be conjugated to drugs. For peptides with lengths ranging between 7 and 12

amino acids, the number of possible combinations is ∼4.3 × 10−15, given 20 different amino

acids. Among other methods, machine learning is an appropriate approach to rationally

design peptides with desired properties. By performing interpretable machine learning

techniques, the predictions of the model can be explained, leading to reproducible and

transparent results.

Regarding the research of identifying malaria vaccine antigen candidates, effective

malaria vaccines targeting either of the most-predominant species, Plasmodium falciparum

and Plasmodium vivax, are an unmet need. Reverse vaccinology, which leverages the wealth

of systemic data derived from pathogen genomes, has been adopted to facilitate the process

of vaccine development. However, most methods involved filtering candidate antigens with

criteria solely based on domain knowledge, and a more comprehensive, data-centric machine

learning approach is less explored. Without prior assumptions about the importance of

protein variables, machine learning assists in learning the variable importance through
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training data sets, and, if provided, the corresponding labels, which indicate whether a

protein is an antigen or non-antigen. Nevertheless, due to the fact that validating the

antigenicity of a protein requires several rigorous experiments and thus is time-consuming,

the antigenic labeling of the proteins is sparse, with only a few proteins labeled as antigens,

and the remaining proteins being unlabeled. To overcome such challenge, an advanced

approach of positive-unlabeled learning is adapted to identify potential antigen candidates

with the goal to further improve the reverse vaccinology pipeline in vaccine development.

1.2 Dissertation Outline

The dissertation is structured so that each chapter corresponds to a manuscript.

Part I: Overview of the Dissertation, provides the background and scope of the problem

domains, as well as a brief introduction to each chapter. Part II: Multifunctional Peptide

Engineering, including Chapters 2 and 3, focuses on using an ensemble machine learning

method to engineer multifunctional peptides to improve sustained ocular drug delivery.

Part III: Malaria Vaccine Identification, consisting of Chapters 4 and 5, emphasizes on

using the positive-unlabeled learning technique to identify potential candidates for malaria

vaccine antigens to facilitate the vaccine development process. The appendices in Part IV

provide additional materials related to the research findings.

Chapter 2: Machine Learning-Driven Multifunctional Peptide Engineering for Sus-

tained Ocular Drug Delivery, presents research results published in Nature Communi-

cations (https://doi.org/10.1038/s41467-023-38056-w), authored by H. T. Hsueh,

R. T. Chou (co-first author), U. Rai, W. Liyanage, Y. C. Kim, M. B. Appell, J. Pejavar,
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K. T. Leo, C. Davison, P. Kolodziejski, A. Mozzer, H. Kwon, M. Sista, N. M. Anders,

A. Hemingway, S. V. K. Rompicharla, M. Edwards, I. Pitha, J. Hanes, M. P. Cummings,

and L. M. Ensign. The research addresses the challenge of delivering drugs into the eye,

which stems from the inherent ocular barriers and clearing mechanisms [6, 7], resulting in

an intensive dosing schedule that discourages patient compliance. Thus, it is important

to develop effective ocular drug delivery systems that can maintain sustained therapeutic

drug levels. To assist in the delivery of drugs to the depot formed by the melanin in-

side the pigmented tissues in the eye, the research leverages machine learning models to

guide the engineering of multifunctional peptide adapters, which imparts melanin binding

and cell penetrating properties to ocular drugs. My contributions to this work include:

(i) developing melanin binding peptide microarray assays; (ii) designing an ensemble ma-

chine learning pipeline to predict melanin binding, cell penetration, and low cytotoxicity

peptides; and (iii) conducting interpretable machine learning analyses to understand and

explain model predictions. The corresponding supplementary information is in Appendix

A. H. T. Hsueh, R. T. Chou, J. Hanes, M. P. Cummings, and L. M. Ensign are named as

inventors on the U.S. Provisional Patent Application No. 63/340,714, which covers aspects

of this work.

Chapter 3: Engineered Peptide-Drug Conjugate Provides Sustained Protection of

Retinal Ganglion Cells with Topical Administration in Rats, presents further application

of the selected peptide candidate from machine learning models trained in Chapter 2 to

another ocular drug, sunitinib, that protects retinal ganglion cells. The research work

is published in Journal of Controlled Release (https://doi.org/10.1016/j.jconrel.

2023.08.058), and is authored by H. T. Hsueh, R. T. Chou (co-first author), U. Rai,
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P. Kolodziejski, W. Liyanage, J. Pejavar, A. Mozzer, C. Davison, M. B. Appell, Y. C. Kim,

K. T. Leo, H. Kwon, M. Sista, N. M. Anders, A. Hemingway, S. V. K. Rompicharla,

I. Pitha, D. J. Zack, J. Hanes, M. P. Cummings, and L. M. Ensign. The research focuses on

improving the drug delivery system to treat chronic diseases related to the posterior segment

of the eye, such as retina, choroid and optic nerve, with the ultimate goal of enhancing

patient adherence for better disease management. My contributions to this manuscript

include: (i) participating in conceptualizing, designing, and interpreting experiments and

results; (ii) using machine learning models to predict and select peptide candidates to be

conjugated to the drug; and (iii) applying an object detection technique to facilitate the

measurement of cell survival rates to validate the effectiveness of the peptide-drug conjugate

in the drug delivery system. The supplementary materials are described in Appendix B.

Chapter 4: Positive-Unlabeled Learning Identifies Vaccine Candidate Antigens in the

Malaria Parasite Plasmodium falciparum, discusses research that studies approaches to fa-

cilitate malaria vaccine development. The manuscript is currently under review by npj

Systems Biology and Applications, and is a collaborative work by the authors, R. T. Chou,

A. Ouattara, M. Adams, A. A. Berry, S. Takala-Harrison, and M. P. Cummings. Malaria is

a mosquito-borne infectious disease caused by Plasmodium species. The parasite has mul-

tiple life stages, and exhibits various immune evasion strategies, such as extremely variable

surface antigens [8]. Thus, it is critical to identify conserved potential vaccine antigens that

are less variable but with subdominant immunogenicity. The research employs a machine

learning-based reverse vaccinology approach to identify potential vaccine antigen candi-

dates for malaria. Since only a few known antigens are selected based on our stringent

criteria, the data set is largely unlabeled. My contributions to this research include: (i)
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adapting a positive-unlabeled learning algorithm to classify P. falciparum proteins into

antigens or non-antigens while tackling the problem with sparse antigenic labeling; (ii) im-

proving the machine learning model by utilizing the tree structure in the positive-unlabeled

random forest model; and (iii) performing downstream computational analyses to charac-

terize top antigen candidates and to further select a smaller set of antigen candidates based

on desired properties for future experimental validation experiments. The supplementary

details for Chapter 4 can be found in Appendix C.

Chapter 5: Plasmodium vivax Antigen Candidate Prediction Improves with the Addi-

tion of Plasmodium falciparum Data, highlights research findings of a comprehensive study

conducted to improve the identification of vaccine antigen candidates for P. vivax, the

second-most prevalent species causing malaria, by integrating data from the well-studied

species, P. falciparum. The study also employs positive-unlabeled learning to construct a

machine learning model with multiple different training sets generated by integrating the

data of the two species. The research work is jointly conducted by the authors, R. T. Chou,

A. Ouattara, S. Takala-Harrison, and M. P. Cummings, and will be submitted to npj System

Biology and Applications soon. My contributions to the manuscript include: (i) applying

the positive-unlabeled learning framework described in Chapter 4 to various combinations

of training data from P. vivax and P. falciparum; (ii) decomposing and quantifying the ef-

fects of the addition of known antigens and/or unlabeled proteins; and (iii) characterizing

top candidate antigens, analyzing important protein variables for identifying top candi-

dates, and comparing important variables identified from across various machine learning

models to gain insights into the proposed integration methodology. Additional information

for Chapter 5 is provided in Appendix D.
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Part II

Multifunctional Peptide Engineering
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Chapter 2: Machine Learning-Driven Multifunctional Peptide Engineering

for Sustained Ocular Drug Delivery

2.1 Abstract

Sustained drug delivery strategies have many potential benefits for treating a range

of diseases, particularly chronic diseases that require treatment for years. For many chronic

ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent in-

traocular injections are significant barriers to effective disease management. Here, we utilize

peptide engineering to impart melanin binding properties to peptide-drug conjugates to act

as a sustained-release depot in the eye. We develop a super learning-based methodology to

engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low

cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine,

an intraocular pressure lowering drug that is prescribed for three times per day topical dos-

ing, intraocular pressure reduction is observed for up to 18 days after a single intracameral

injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases

∼17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug

conjugates are a promising approach for providing sustained therapeutic delivery in the

eye and beyond.
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2.2 Introduction

In many disease settings, sustained delivery of therapeutic levels of drug can improve

treatment efficacy, reduce side effects, and avoid challenges with patient adherence to in-

tensive dosing regimens [9, 10]. This is particularly critical in the management of chronic

diseases, where long-term adherence to medication usage and clinical monitoring can suf-

fer [11, 12]. In the ophthalmic setting, the leading causes of irreversible blindness and low

vision are primarily age-related, chronic diseases, such as glaucoma and age-related mac-

ular degeneration [13–15]. Recent approvals of devices that provide sustained therapeutic

release, such as the Durysta® intracameral implant for continuous delivery of an intraocu-

lar pressure (IOP) lowering agent, and the surgically implanted port-delivery system that

provides continuous intravitreal delivery of ranibizumab, highlight the importance of these

next generation approaches for ocular disease management [16–19]. Conventionally, sus-

tained therapeutic effect is achieved by an injectable or implantable device that controls the

release of the therapeutic moiety into the surrounding environment. However, these devices

typically require injection through larger gauge needles or a surgery for implantation, with

both procedures having associated risks [20–22]. Further, the buildup of excipient material,

the need for device removal, and the potential for foreign body reaction can cause further

issues [18, 23, 24].

One approach for circumventing the issues associated with sustained release devices is

to impart enhanced retention time and therapeutic effect to drugs upon administration to

the eye without the need for an excipient matrix/implant. Binding to melanin, a pigment

present within melanosomes in multiple ocular cell types, was previously reported to affect
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ocular drug biodistribution [25]. Due to the low turnover rate of ocular melanin, a drug

that can bind to melanin may accumulate in pigmented eye tissues, leading to drug toxicity

or drug sequestration [26, 27]. However, with the right balance of melanin-binding affinity

and capacity, melanin may act as a sustained-release drug depot in the eye that results in

prolonged therapeutic action [28]. Several drugs have been demonstrated to have intrinsic

melanin binding properties due to particular physicochemical properties, which in some

cases, prolongs the pharmacologic activity in the eye [28–30].

To impart beneficial melanin-binding properties to drugs, one approach is to engi-

neer peptides with high melanin binding that could be conjugated to small molecule drugs

through a reducible linker. Thus, the peptide would provide enhanced retention time,

while the linker would ensure that drug could be released and exert its therapeutic action

in a sustained manner. In addition, there are available databases describing how peptide

sequence affects cell-penetration [31,32], and separately cytotoxicity [33], enabling the po-

tential for engineering multifunctional peptides that can be chemically conjugated to drugs.

Incorporating multiple functions into one peptide sequence remains challenging, and thus

multifunctional peptides are often designed by fusing peptides via a linker, thus forgoing

potentially more efficient rational design, or by testing additional properties on peptides

with known functions [34–36]. In contrast, machine learning could allow for designing

peptide sequences that simultaneously provide multiple desired properties.

Here, we describe the development of engineered peptides informed by machine learn-

ing, which have three properties: high binding to melanin, cell-penetration (to enter cells

and access melanin in the melanosomes), and low cytotoxicity. As there was no prior infor-

mation for how peptide sequences affect melanin binding, we experimentally determine the
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effect of peptide sequence on melanin binding using a microarray. We then apply machine

learning-based analyses to identify peptide sequences that display all three desired proper-

ties. Importantly, with the Shapley additive explanation (SHAP) analysis [37] of peptide

variables, the machine learning model interpretation provides additional insights and rea-

soning for the multifunctionality of the peptides. As a proof-of-principle, we demonstrate

here that an engineered peptide, HR97, can be conjugated to the intraocular pressure (IOP)

reducing drug, brimonidine tartrate. A single intracameral (ICM) injection of the HR97-

brimonidine conjugate is able to provide sustained IOP reduction in normotensive rabbits

compared to ICM injection of an equivalent amount of brimonidine tartrate, or a topical

dose of Alphagan® P 0.1% eye drops. Further, the maximum measured change in IOP

from baseline (∆IOP) is increased with ICM injection of the HR97-brimonidine conjugate.

We anticipate that engineered peptide-drug conjugates will facilitate the development of

implant-free injectables for use in a variety of ophthalmic indications.

2.3 Results

2.3.1 Development of high throughput melanin binding peptide microarray

methodology

To determine how peptide sequence affects melanin binding properties, we adapted

a high-throughput flow-based peptide microarray system to characterize melanin binding

events (Fig. 2.1a). Commercially available eumelanin was processed into nanoparticles

(mNPs) to prevent sedimentation and provide reproducible surface area available for bind-

ing to peptides printed on the substrate surface. The mNPs had an mean size of 200.7±5.99
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nm and ζ-potential of −23.7 ± 1.39 mV (Fig. 2.1b, c). The mNPs were further biotinylated

(b-mNPs) to facilitate fluorescent labeling with streptavidin DyLight680. The b-mNPs

showed slightly larger mean size of 216.0 ± 14.85 nm and ζ-potential of −21.2 ± 2.15 mV

(Fig. 2.1b, c), and maintained similar spherical morphology (Fig. A.1a) and binding to

small molecule drugs brimonidine tartrate and sunitinib malate (Fig. A.1b). The first

microarray was printed with 119 peptides to screen flow conditions for the highest fluo-

rescent reporter signal, which identified that the 500 µg/mL of biotinylated mNPs in pH

6.5 PBS buffer at room temperature was optimal (Fig. 2.1d and Fig. A.2). We then used

the fluorescent reporter signals to construct a melanin binding classification random forest

model. The prediction accuracy was 0.92. The permutation-based variable importance

analysis [38] further revealed that the net charge, basic amino acids, and isoelectric point

(pI) may contribute to distinguishing melanin binding and non-melanin binding peptides

(Fig. 2.1e).

2.3.2 Training of the melanin binding regression model

A second larger peptide screen was implemented to generate melanin binding data

to use for the additional model generation (Fig. 2.2a). Specifically, we used the trained

random forest model to predict melanin binding for ∼630,000 randomly generated pep-

tides, and those classified as melanin binding were selected. A total of 5499 peptides were

printed in duplicate, and the fluorescent reporter intensities were reported as the amount

of the b-mNPs that bind to the printed peptides on the microarray. Surprisingly, we

identified 780 peptides displaying higher levels of fluorescent reporter intensities than any
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Figure 2.1 Pilot 119 melanin binding peptide microarray screening with machine
learning analysis. a Schematic illustration of the first peptide microarray. Peptides were
anchored to a microarray, and melanin nanoparticles (mNPs) with surface biotinylation (b-mNPs)
were flowed over to characterize binding events. The fluorescence intensity of the biotin was
detected using DyLight 680-conjugated streptavidin to quantify melanin binding for each peptide.
An initial classification model was trained using the data generated. Random peptides were then
classified by the model as melanin binding or non-melanin binding. Created with BioR- ender.com.
b,c Plot showing the sizes (b) and ζ-potential (c) of mNPs (black dots, n = 6 and b-mNPs
(gray squares, n = 6). Data are presented as mean ± SD. Group means were compared using
Student’s t tests (two-tailed). d The optimal interaction profiling of b-mNPs against 16 positive
control peptides (peptide numbers: 1–16) and 103 random peptides (peptide numbers: 17–119).
e Permutation-based variable importance analysis of the melanin binding classification random
forest. The x-axis indicates the mean decrease in prediction accuracy after variable permutation.
The values are shown at the end of the bars. The top 20 important variables ranked by mean
decrease in accuracy are shown.
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of the 16 peptides described in the literature that bound to human melanoma cells [39]

and melanized C. neoformans [40], which were previously screened by the phage display

technique. Furthermore, there were 758 peptides showing higher fluorescent values than

the highest melanin binding peptides (661.5 arb. units) from the 119-peptide microarray,

demonstrating the enrichment of melanin binding properties from training the random

forest model. Next, the fluorescent reporter intensities values were used as the response

variable in training a regression model. Applying a variable reduction procedure using ran-

dom forest to eliminate less informative variables from the data set, reduced the number of

variables from 1094 to 64 (Fig. A.3a), and model performance measured by the coefficient

of determination (R2) improved from 0.48 to 0.53. A wide array of machine learning mod-

els was explored and trained on the variable-reduced data set and were integrated with a

super learning (SL) framework that combined various types of base models weighted using

a meta-learner. By applying the iterative base model filtering procedure (Fig. 2.2b), the

complexity of the SL was further reduced. To explore other combinations of base models in

the SL ensemble, homogeneous base models consisting of models from only one algorithm

family were constructed. A nested cross-validation (Fig. 2.2c) was applied to estimate an

unbiased generalization performance. All SL models with base model reduction were se-

lected as the top model in the inner loop cross-validations, and the performance evaluated

in the outer loop cross-validation improved to R2 = 0.54 ± 0.01 (Table A.1). The reduced

SL was selected amongst 31 competitive models as the final melanin binding regression

model. When training the same set of models on the whole data set, and number of base

models in the SL was reduced from 907 to 38 (Fig. 2.2d). Adversarial computational con-

trol was performed, and the generalization performance was R2 = −0.04 ± 0.02, indicating

15



that the machine learning was effective in learning meaningful relationships in the melanin

binding data set.

2.3.3 Training of cell-penetration and cytotoxicity classification models

Engineered peptides must enter cells to reach and bind to melanin within the melano-

somes and should be minimally toxic to cells. Thus, the SkipCPP-Pred [31] and the Toxin-

Pred [33] databases were used to create SL classification ensembles to engineer tri-functional

peptides. Variable reduction decreased the number of variables from 1094 to 11 for the

cell-penetration data set (Fig. A.3b) and from 1094 to 56 for the cytotoxicity data set

(Fig. A.3c). The prediction accuracies calculated from out-of-bag samples improved from

0.91 to 0.93 and from 0.951 to 0.958 for cell-penetration and cytotoxicity, respectively. We

subsequently trained base models and SL ensembles, and the generalization performances

in terms of Matthews correlation coefficient (MCC), F1 (harmonic mean of precision and re-

call), and balanced accuracy for cell-penetration were 0.79±0.01, 0.90±0.01, and 0.90±0.01,

respectively; and those for cytotoxicity were 0.88±0.004, 0.92±0.002, and 0.95±0.002, re-

spectively (Tables A.2, A.3). The number of base models in the reduced SL models trained

on the whole data sets were decreased from 310 to 65 for cell-penetration, and from 311

to 22 for cytotoxicity (Fig. A.4). There were 300 competitive cell-penetration models and

175 competitive cytotoxicity models. A GBM model and the reduced SL were selected as

the final predictive cell-penetration and cytotoxicity models. Similar to melanin binding,

adversarial controls had decreased generalization performances, where the MCC, F1, and

balanced accuracy were −0.002±0.05, 0.52±0.03, and 0.50±0.03 for cell-penetration, and
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Figure 2.2 Schematic of the machine learning pipeline based on the super learner
framework for the melanin binding data set. a Scheme of a larger microarray, which
includes 5499 peptides used to train a regression super learner. Random peptides were generated
based on position-dependent amino acid frequencies calculated using the second peptide array
data, and the melanin binding levels were predicted. Peptides with desired melanin binding levels
were selected for further experimental validation. Created with BioRender.com. b Scheme of
the super learner complexity reduction. Holdout predictions of peptides (shown as rows) were
generated for each base model (shown as columns) with tenfold cross-validation (CV) on the input
data set. A meta-learner (generalized linear model) was fitted on the holdout predictions with
another tenfold cross-validation. The number of base models was reduced by applying an iterative
reduction procedure (see Section 2.5). The final super learner ensemble was trained on the input
data set with the optimal combination of the selected base models. c Scheme of the machine
learning pipeline for an unbiased model performance evaluation. The nested cross-validation
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Figure 2.2 (previous page) includes an outer loop for model evaluation and an inner loop for
model selection (cyan). The outer loop generated 10 sets of train-test splits using a Monte Carlo
method, and the inner loop generated 10 sets of train-test splits using a modulo method. d Plot
of the base models of the final melanin binding super learner. Coefficients of determination (R2)
are denoted with color and conveyed as white text on the bars or gray text adjacent bars. Base
model coefficients are indicated at the bar ends. There is one model having zero coefficient and
not shown. See Sections 2.5 and A.1 for information about model hyperparameter details and
statistics of model performance.

0.001 ± 0.01, 0.05 ± 0.02, and 0.62 ± 0.04 for cytotoxicity.

2.3.4 Validation of predicted peptide properties in vitro

A position-dependent amino acid frequency matrix was used to generate 127 peptides

that spanned the range of low to high predicted melanin binding. Among the 127 peptide

candidates, 113 peptides were classified as cell-penetrating and 117 peptides were predicted

as non-toxic. To experimentally measure melanin binding in vitro, biotinylated peptides

were incubated with mNPs, and the bound fraction was calculated using an avidin-based

fluorescent reporter (Fig. 2.3a). The Pearson correlation coefficient was computed to com-

pare the predicted and experimental melanin binding values, and the correlation coefficient

was r = 0.84, showing a high level of correlation between the predicted and experimental

values (Fig. 2.3b). We next characterized how the predicted cell-penetrating properties

of the peptides affected cell uptake in a retinal pigment epithelium cell line (ARPE-19).

ARPE-19 cells were cultured using standard methods (non-induced, n = 3) and using

culture conditions that induce melanin production (induced, n = 3) [28]. A positive corre-

lation was observed between the measured in vitro melanin binding of the peptides and the

intracellular peptide concentrations in melanin-induced cells for cell-penetrating peptides

(r = 0.77, p < 2.2 × 10−16) but not non-cell-penetrating peptides (r = 0.28, Fig. 2.3c, d),
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suggesting correlation between the two properties. Further, peptides predicted to be cell-

penetrating demonstrated significantly higher intracellular concentrations (median 229.4

pmol/100 K cells) than those of non-cell-penetrating peptides (median 26.7 pmol/ 100 K

cells) in the melanin-induced cells (p = 6.9 × 10−6, Fig. 2.3e). In contrast, the intracellular

peptide concentrations were not affected by the predicted properties in non-induced cells

(Fig. A.5).

2.3.5 Analysis of peptide variables that contribute to observed properties

To identify which peptide variables contributed to the properties observed in vitro,

Shapley additive explanation (SHAP) analysis of the final predictive models was performed.

The results showed that peptide property predictions were based on contribution from mul-

tiple variables. More specifically, basic peptides and higher net charge variables had higher

contributions to melanin binding predictions (Fig. 2.4a), which was consistent with the top

variables identified by the random forest classification model trained on the pilot peptide

microarray. Similarly, higher net charge and higher isoelectric point contributed more to

cell-penetration (Fig. 2.4b), and less free cysteines had more influence on non-toxic pre-

dictions (Fig. A.6). To understand how reliable the interpretable results were, adversarial

controls were constructed with the final predictive models using a 10-fold cross-validation.

Indeed, the distributions and levels of variable contributions changed for melanin binding,

cell-penetration, and cytotoxicity (Fig. A.7). Among all the peptide candidates, HR97 (FS-

GKRRKRKPR) was selected based on combination of the three peptide properties (melanin

bindingHR97 = 79.1 ± 0.7%, cell uptakeHR97 = 759.9 ± 19.6 pmol/100 K cells, non-toxicHR97
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Figure 2.3 Experimental validations of final model predictions on melanin binding and
cell-penetration. a Schematic showing an in vitro melanin binding assay with melanin nanopar-
ticles (mNPs) using a biotin quantification kit. The DyLight 494-tagged avidin emitted fluores-
cence when the biotinylated peptides displaced the weakly interacting 4′-hydroxyazobenzene-2-
carboxylic acid (HABA or H). Created with BioRender.com. b Plot of the relationship between
predicted melanin binding and binding measured experimentally in vitro. The x-axis indicates
melanin binding predictions from the final super learner, and the y-axis indicates the experimental
melanin binding values (n = 4 for each peptide). Dots represent the mean value for peptides. The
black linear trend line conveys the Pearson correlation relationship (two-tailed), and the gray area
indicates the 95% confidence interval. c, d Comparison of melanin binding and cell-penetration
in melanin-induced human adult retinal pigment epithelial (ARPE-19) cells. Blue triangles de-
note predicted non-cell-penetrating peptides (non-CPP), and magenta dots represent predicted
cell-penetrating peptides (CPP). The x-axes indicate melanin binding measured in vitro (n = 4
for each peptide), and the y-axes convey intracellular peptide concentration measured from the
cell uptake assay (n = 3 for each peptide). Black linear trend lines indicate Pearson correlation
relationships, with 95% confidence intervals shown as shaded areas. The correlation coefficients
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Figure 2.3 (previous page) and p-values (two-tailed) are shown. e Summary of CPP (n = 113)
and non-CPP (n = 14) intracellular concentrations. Box plot conveys median (middle line),
25th and 75th percentiles (box), and the 1.5 × interquartile range (whiskers). The p value was
calculated using a Mann–Whitney U test (two-tailed).

= 96.9%, Fig. 2.4c). HR97 had the highest intracellular concentration, which outperformed

the well-characterized cell-penetrating peptide fragment of the HIV trans-activator protein

(TAT47−57, YGRKKRRQRRR). HR97 demonstrated increased cell uptake compared to

TAT47−57 in both the induced ARPE-19 cells (cell uptakeHR97 = 759.9 ± 19.6 pmol/100 K

cells, cell uptakeTAT47−57 = 457.1 ± 34.2 pmol/100 K cells) and the non-induced cell type

(cell uptakeHR97 = 82.5 ± 9.1 pmol/100 K cells, cell uptakeTAT47−57 = 68.3 ± 4.6 pmol/100

K cells). In addition, HR97 showed no sign of cytotoxicity in ARPE-19 cells at concen-

trations up to 5 mg/mL (Fig. A.8). HR97 predictions embodied all the properties that

were the largest contributors to each functionality, including being basic (63.64% basic

amino acids), possessing a high net charge (6.98) and a high isoelectric point value (12.99),

and no cysteines (Fig. 2.4d–f). By visualizing the peptide design space defined by the

sequences and variables used in training the desired functional properties, the peptide can-

didates with high melanin binding predictions were shown up in the same cluster, showing

similar sequence motifs and physiochemical properties (Fig. 2.5a, b). Further, peptides

predicted to have high melanin binding were mostly predicted to be cell-penetrating, but

cell-penetrating peptides may not be melanin binding (Fig. 2.5c). The results also suggest

that some melanin binding peptides may be toxic (Fig. 2.5d).
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Figure 2.4 Melanin binding, cell-penetration model interpretation, and variable con-
tributions to HR97 multifunctional peptide predictions. Overall variable contributions to
model predictions for (a) melanin binding and (b) cell-penetration. The top important variables
analyzed using Shapley additive explanations (SHAP) are shown. Dots represent peptides from
cross-validation test sets. The x-axes indicate SHAP values, indicative of variable contributions
to model prediction ranging from 0 to 100. The variables were ranked based on the difference
between the maximum and minimum SHAP values. The color gradient indicates the variable
values normalized by percentile ranks. Higher variable values are indicated by darker magenta
color and lower values by darker blue color. The minimum and maximum variable values are
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Figure 2.4 (previous page) noted on the right of each subplot. c Scatter plot showing the
in vitro melanin binding, in vitro cell-penetration, and predicted cytotoxicity values of the 127
candidate peptides. Dots represent peptides. HR97 (black dot) was selected based on the optimal
multifunctional combination. d–f Variable contributions to HR97 multifunctional predictions
for melanin binding, cell-penetration, and cytotoxicity. The top variables ranked by absolute
SHAP values are shown. Magenta bars indicate positive contributions, and blue bars are negative
contributions. The y-axis labels convey variable names and their values for HR97. E[f(X)] denotes
the expected prediction value, and f(x) is the final prediction, calculated from the sum of all SHAP
values plus E[f(X)].

2.3.6 Characterization and validation of a peptide-drug conjugate in vivo

To investigate the effect of peptide conjugation on drug pharmacodynamics, we chose

brimonidine tartrate, a topical IOP lowering drug prescribed for glaucoma treatment.

The HR97 peptide was conjugated to brimonidine (HR97-brimonidine) via a quaternary-

ammonium traceless linker system, and the structure of the intermediates and the purified

conjugate were validated by NMR and MALDI-TOF (Figs. A.9–A.12). Conjugation to

HR97 provided a ∼10-fold increase in the in vitro melanin binding capacity of brimonidine

(5.9×107 Kd (M) vs. 5.0×10−8 Kd (M)), which brought the binding capacity closer to other

drugs with high intrinsic melanin binding, such as sunitinib malate (Fig. 2.6a) [28, 41–45].

When incubated in human aqueous fluid, only ∼7% of the brimonidine was released from

the HR97-brimonidine conjugate over 28 days in vitro (Fig. 2.6b). However, upon incuba-

tion with supraphysiological concentrations of human cathepsin cocktails to enzymatically

cleave the linker, ∼52% of the brimonidine was liberated within 48 h (Fig. 2.6c). The ef-

fect of the HR97-brimondine conjugate on IOP was then evaluated in normotensive Dutch

Belted rabbits. A single topical dose with the commercial brimonidine eye drop (n = 5) was

found to provide a peak reduction in IOP from baseline (∆IOP) of −3.0±0.82 mmHg that

23



Figure 2.5 Visualization of the peptide design space based on sequences and physio-
chemical properties. a t-distributed stochastic neighbor embedding (t-SNE, used to visualize
high-dimensional data) plots showing the peptide design space defined by the combination of
one-hot encoded peptide sequences and variables used in melanin binding, cell-penetration, and
cytotoxicity model training. Dots represent control peptides from Howell et al. [39] (magenta)
and Nosanchuk et al. [40] (blue); peptides used in the pilot (purple) and second (gray and yellow)
melanin binding peptide microarrays; and multifunctional peptide candidates (black and yellow)
used in the validation experiments. HR97 and TAT are noted. b t-SNE plot of peptides colored
by melanin binding prediction. Higher melanin binding values are colored by darker magenta and
lower by darker blue. c t-SNE plot of peptides colored by cell-penetration prediction. Magenta
dots represent predicted cell-penetrating peptides (CPP), and blue dots are predicted non-cell-
penetrating peptides (non-CPP). d t-SNE plot of peptides colored by cytotoxicity prediction.
Blue dots denote predicted toxic peptides, and magenta dots indicate non-toxic peptides.
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recovered to baseline within 8 h (Fig. 2.6d). In contrast, a single ICM injection of the HR97-

brimonidine conjugate resulted in a greater peak ∆IOP compared to an ICM injection of

brimonidine solution at 2 days (−4.9 ± 0.46 mmHg vs. −2.6 ± 1.65 mmHg, p < 0.05, red

arrow). In a separate experiment, ICM injection of saline or HR97 (n = 5 for each) resulted

in a similar decrease in IOP that returned to baseline by day 3, and ICM injection of a

physical mixture of HR97 and brimonidine tartrate (n = 5) resulted in a similar IOP profile

to the brimonidine solution, returning to baseline by day 8 (Fig. A.13). To ensure that the

dramatic decrease in IOP with the HR97-brimonidine conjugate was not due to toxicity,

a board-certified ophthalmologist evaluated the eyes injected with the HR97-brimonidine

conjugate on day 7. It was observed that the lids, lashes, and conjunctiva were normal, the

corneas were clear, the corneal endothelium was normal without any pigment deposition,

the anterior chambers were normal depth, there was no apparent inflammation or fibrin

strands, the lenses were clear, and the iris pigmentation was symmetric. According to the

same evaluation methods, no ocular toxicity was observed upon ICM injection of saline,

HR97, or a physical mixture of HR97 and brimonidine tartrate for at least 28 days (Tables

A.4–A.7). The mean ∆IOP in the HR97-brimonidine conjugate group remained signifi-

cantly larger than in the rabbits dosed with brimonidine solution or the physical mixture

of HR97 and brimonidine tartrate for up to 14 days (Fig. A.6d, A.13). Further, the time

for the mean ∆IOP to return to baseline was 20 days in the HR97-brimonidine conjugate

group compared to 8 days in both groups of rabbits dosed with brimonidine solution or

the physical mixture of HR97 and brimonidine tartrate. When summing the area under

the curve (AUClast) for the cumulative ∆IOP over the 20-day measurement period after

ICM injection, the HR97-brimonidine conjugate showed a ∼17-fold greater AUC compared
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to brimonidine solution (p < 0.001) (Fig. A.6e). A pharmacokinetic study was conducted

separately to characterize the intraocular distribution of brimonidine after ICM injection

of HR97-brimonidine in Dutch Belted rabbits. The brimonidine concentration remained

relatively high in the pigmented iris tissue (980 ng/g) compared to less pigmented parts

of the eye, such as the aqueous humor (0.4 ng/g) and the retina (8.3 ng/g) up to 28 days

after a single ICM injection (Fig. A.6f). The brimonidine concentration in the aqueous on

day 7 (83.3 ng/g) was similar to what we previously reported at 2 h after a single drop

of Alphagan P (0.15%) (105 ng/g), which was the time with the largest IOP reduction

in that study [46]. On day 14 after ICM injection of HR97-brimonidine, the brimonidine

concentration in the aqueous (3.9 ng/g) was similar to what we previously reported at 4 h

after a single drop of Alphagan P (0.15%) (4 ng/g) [46].

2.4 Discussion

Chronic eye diseases such as glaucoma require continuous treatment to prevent disease

progression. Eye drops are the most common dosage form of glaucoma therapy, though low

adherence to intensive drop dosage schedules is a major challenge in disease management

[11,47,48]. One study using an electronic monitoring device found that only 64% of patients

adhered to the three-times daily dosing schedule for brimonidine eye drops over a 4-week

period, even though they were aware of the monitoring [49]. Sustained drug delivery

systems may be an attractive alternative for the management of chronic ocular diseases

like glaucoma. The first sustained-release polymer-based implant for glaucoma treatment,

Durysta®, was recently approved for sustained IOP lowering for several months with a
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Figure 2.6 Characterization of HR97-brimonidine in vitro and in vivo. a In vitro
binding capacity and dissociation constant of HR97-biotin, HR97-brimonidine, and brimonidine
characterized using a melanin nanoparticle (mNP) assay (red dots, n = 3–5). Values shown for
comparison include those we previously measured for sunitinib and N-desethyl sunitinib [28], and
literature values for other ophthalmic drugs [41–45]. b In vitro stability of HR97-brimonidine
conjugate in human aqueous humor for 28 days. The percent remaining was normalized to the
starting concentration on day 0 (n = 3). Data are shown as mean ± SD. c Cathepsin cleavage
assay of the HR97-brimonidine conjugate. HR97-brimonidine (n = 3) were incubated with human
cathepsin cocktails or buffer only for 48 h at 37 ◦C (two-tailed t-test). Data are shown as mean ±
SD. d Comparison of the intraocular pressure (IOP) change from baseline (∆IOP) after a single
ICM injection of HR97-brimonidine conjugate (white dots), brimonidine solution (black dots, 200
µg brimonidine equivalent), and a single drop of Alphagan P (gray dots, 0.15%) in normotensive
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Figure 2.6 (previous page) Dutch Belted rabbits (n = 5 per group). The IOP was measured
every 1–2 days until returning to the baseline. The red arrow highlights the further decrease in
IOP provided by the HR97-brimonidine. Two-tailed t-test was used, ∗p < 0.05 (adjusted p values
for days 2, 3, 4, 6, and 8 were 0.044, 0.007, 0.038, 0.007, 0.007, respectively). Data are presented
as mean ± SEM. e Cumulative ∆IOP of brimonidine (black dots) and HR97-brimonidine (gray
squares) after ICM injection. The cumulative ∆IOP was characterized by calculating the area
under the curve over the 20-day measurement period (AUClast, n = 5). Two-tailed t-test was used.
Data are presented as mean ± SD. f Levels of brimonidine in the iris (black dots), aqueous (gray
squares), and retina (white dots, n = 3–4) over time after ICM injection of HR97-brimonidine
(200 µg brimonidine equivalent). The concentrations of brimonidine measured in the aqueous
after a single drop of Alphagan P (0.15%) as part of a previous study [46] at 2 h (maximal IOP
lowering time point; dotted line) and 4 h (dashed line) after dosage are shown. Data are shown
as mean ± SD.

single ICM injection [17]. However, the polymer matrix typically took longer to biodegrade

than the duration of drug release, and repeated injection with additional implants was

associated with increased risk of corneal endothelial cell loss and other corneal adverse

reactions [50]. In contrast to conventional polymer-based sustained drug delivery systems,

the approach we describe here does not require an implant or large amounts of excipients

that will remain in the eye for extended periods. By utilizing short peptide sequences that

impart melanin binding to the drug conjugate, a sustained intraocular drug release system

was created without the need for a polymer matrix.

Ocular melanin is a biopolymer that resides within melanosomes in pigmented ocular

tissues, including the iris, ciliary body, choroid, and retinal pigment epithelium (RPE) [51].

Although the amount of pheomelanin in the eye varies depending on eye color, the amount

of eumelanin in ocular tissues, including the RPE, iris pigment epithelium, and pigmented

ciliary epithelium is more consistent across the population [52]. It has been described that

drug binding to melanin and accumulation inside cells may diminish therapeutic effect by

sequestering the drug or causing ocular toxicity [26,27]. In the case of atropine, the intrinsic
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melanin binding properties were shown to lead to prolonged residence time in pigmented

rabbit ocular tissues [53], and a sustained miotic response in pigmented rabbits [29]. In ad-

dition, we previously demonstrated that improving the intraocular absorption of sunitinib,

a drug with relatively high melanin binding capacity, with a novel gel-forming hypotonic

eye drop led to prolonged therapeutic effect of up to 1 week after dosing [28]. Indeed,

a recent study used machine learning methods to characterize the structural features of

small molecule drugs that impact intrinsic melanin binding, leading to the development of

a model that predicted intrinsic melanin binding with 91% accuracy [30]. These findings

motivated us to develop engineered adaptors designed to impart tunable melanin binding

properties to small molecule drugs used to treat ocular diseases. Further, as melanin is

contained within cells, the engineered adaptor should additionally provide cell penetra-

tion. Here, we developed a machine learning-based methodology to engineer tri-functional

peptides that displayed melanin binding, cell-penetration, and non-toxic properties. The

peptide sequence that provided the optimal combination of high melanin binding, high

cell-penetration, and low cytotoxicity, HR97, was then conjugated to brimonidine as a

proof-of-principle. The HR97-brimonidine conjugate provided up to 18 days of IOP lower-

ing with a single ICM injection in normotensive rabbits, which contrasts with the 8 h-effect

provided by a brimonidine eye drop.

Peptides are short sequences of amino acids that can have many combinations with

diverse biological functions. Compared to other aptamers and small molecule drug libraries,

peptides are relatively cost effective to synthesize and are relatively easy to modify or

conjugate to small molecule drugs [54]. Currently, there are more than 80 FDA-approved

peptide drugs and more than 600 in clinical and pre-clinal trials [55–57]. Peptides optimized

29



for a single function, either exhibiting cell-penetration or cell targeting properties, have been

widely exploited as drug carriers to shuttle drugs across biological barriers [58–60]. Peptides

such as TAT, penetratin, PEP-1 and polyarginine (R6 or R8) and have been conjugated

with various cargos for targeting the anterior and posterior segment [61–68]. For example,

various fluorescein conjugated peptides were screened for the ability to cross porcine cornea

ex vivo [68, 69]. Penetratin (PNT) showed an eightfold increase in permeability compared

to PEP-1, though most of the peptide was found to be sequestered within cells rather

than having crossed the cornea [68, 69]. In another study, TAT peptide was conjugated to

human acidic fibroblast growth factor (aFGF) and applied topically to rat eyes [70]. They

found that the conjugates reached the retina with a tmax of 30–60 min and with possible

mechanism of conjunctival-scleral penetration route [70]. However, it is known that drugs

can more easily reach the posterior segment with topical administration in rat and mouse

eyes compared to larger eyes, such as rabbits [71–73].

Many peptide screening technologies have been developed for identifying novel func-

tional peptides, including phage display, mRNA display, and peptide microarray [74–76].

Phage display and mRNA display are capable of screening a larger number of peptides

(∼1011–1013) compared to peptide microarray (∼105). However, in phage display and

mRNA display, the peptide sequences are randomly generated with fixed ratios of amino

acids [75]. In contrast, coupling computationally generated peptide sequences with pep-

tide microarrays has the advantage of rapidly improving peptide design through machine

learning model refinement. Peptides can be computationally represented by physicochem-

ical and structural descriptors [77] or encoded using various rules such as binary encoding

and evolution-based encoding [78]. Since peptide sequence is the source of functionality,
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a machine learning-based approach can be employed to develop predictors that learn the

relationships between peptide variables derived from the sequence and the desired func-

tional property [79–81]. Peptide databases have also been made available for data-driven

functional peptide design, including cell-penetration and toxicity [32, 33]. However, there

is only a limited number of studies for, and no database of, melanin binding peptides. An

example here is that in the two studies that reported peptide sequences that were char-

acterized as melanin binding, phage display was used to identify 8 peptides that bind to

melanin in human melanoma cells [39] and 8 peptides that bound to melanized C. neofor-

mans [40]. However, in our peptide microarray, 8 of these peptides did not demonstrate

detectable melanin binding, and overall, we identified 780 peptides displaying higher levels

of melanin binding than any of these peptides described in the literature. Furthermore, the

second peptide microarray designed using the initial machine learning model provided more

potent melanin binding peptides compared to the first peptide microarray, demonstrating

the rapid improvement in design by machine learning model refinement.

Multifunctional peptides with dual or triple pharmacological properties have also

been integrated into drug delivery systems through conjugation to drugs or drug-loaded

cargos [34,82,83]. However, it is challenging to design peptides with multiple functions con-

tained in a single sequence. Often single function peptides are fused directly or by a linker

peptide [83–85], which may increase the peptide length and reduce the desired functional

properties of each component. Another approach is to optimize additional functional prop-

erties by substituting amino acids on a template peptide with a known function [35, 36],

which may require extensive laboratory screening and is time-consuming. Generating mul-

tifunctional peptides with the flexibility to choose the desired functional levels is a less
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explored research area [86, 87]. Here, our machine learning and model interpretation ap-

proach guided the engineering of multifunctional peptides. The peptide properties were

analyzed using the shared variable set, revealing mutually important variables contribut-

ing to both melanin binding and cell-penetration, where peptides with moderate to high

net charge and containing more basic amino acids tend to possess both melanin binding

and cell-penetrating properties. Further, we unexpectedly observed correlation between

melanin binding and cell-penetrating in cell uptake in vitro. Thus, the highest intracellular

accumulation was achieved by increasing the amount of peptide that can access intracellu-

lar melanosomes, where the peptides can then bind to melanin and provide sustained drug

release.

Many machine learning models including random forest, support vector machines,

and deep learning have been developed to predict how amino acid sequence governs peptide

properties [88]. Super learning is an ensemble machine learning method that takes advan-

tage of various machine learning models. The predictive performance of a super learner

ensemble is assured to be at least as accurate as the best-performing base model [89, 90].

The same model types with varying hyperparameter combinations can be included in a

SL ensemble. Recently, it was described that base model hyperparameter tuning could

improve overall SL model performance [91]. Based on this finding, we further developed a

procedure to systematically select optimal base model composition by iteratively filtering

out models that have less contributions to the SL ensemble. Indeed, we obtained better

SL model performance compared to the one including all base models. In this study, we

explored a wide array of possible machine learning models and identified multiple com-

petitive models through statistical analyses. SL provided a framework to integrate these
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explored models. Although the meta-learner may add a layer of complexity, it demon-

strated an interpretable summary of the model importance in terms of their contributions

to the final predictions. In addition, the complexity of the machine learning architecture

was reduced by variable reduction of the data sets and base model filtration of SL. Further,

interpretable machine learning that extracts relevant information such as variable contribu-

tions to output predictions from the data relationships learned by the model is important

for explaining model predictions [92, 93]. Many of the functional peptide predictors and

other drug discovery tools do not have information on how and why top candidates were

identified [94–96]. In this study, we showed that interpretation of machine learning models

can provide insights to improve the design of multifunctional peptides. The SHAP analysis

not only indicated important variables contributing most to the model prediction, but also

showed the relationships between variable values and prediction outputs.

The studies described here are not without limitations. First, while the in vitro

ARPE19 cell assay helped validate the cell-penetrating and melanin binding performance,

the methodology used here did not differentiate between peptides that were free or bound

to melanin or other structures within the cell. Indeed, there was a baseline level of peptide

associated with non-pigmented cells, but a substantial increase in cellular localization was

observed when the cells were induced to produce melanin. Second, the traceless linker

conjugation yield of the HR97-brimonidine was low and requires further optimization. The

cathepsin-labile linker was chosen because cathepsins are largely located intracellularly

and are present in minimal amounts in extracellular fluids such as aqueous humor [97–100].

Thus, the intracamerally delivered HR97-brimonidine would be stable until it had localized

within melanin-containing cells. However, the level of brimonidine measured in rabbit
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iris tissue remained high, suggesting that further optimization of the linker cleavage and

brimonidine release rate may also extend the duration of the therapeutic effect. Finally,

the duration of IOP lowering reported here (20 days) was sufficient to demonstrate the

proof-of-principle in normotensive rabbits but would not be clinically translatable. Future

work with more potent drugs may increase the duration of action.

The approach we described here to apply ensemble machine learning to peptide mi-

croarray enabled the efficient design of multi-functional peptides, which in this application

enhanced the intraocular pharmacokinetics and pharmacodynamics of the ophthalmic drug

brimonidine. Engineered HR97 peptide demonstrated increased cell-penetrating properties

compared to known cell-penetrating peptides, such as TAT, and simultaneously possessed

high melanin binding capacity and low cytotoxicity. In the current context, utilizing short

peptide sequences that impart melanin binding to a drug conjugate may provide an av-

enue for creating safe and effective implant-free sustained intraocular drug release systems.

More broadly, the approach described here can be applied to generate multifunctional

peptide-drug conjugates for a variety of biomedical applications.

2.5 Methods

2.5.1 Material sources

Brimonidine was purchased from TCI America. Eumelanin from Sepia officinalis,

0.22 µm Millex-GV PVDF filter, ferric ammonium citrate, bovine serum albumin (BSA),

Tween 20, fetal bovine serum (FBS), trifluoroacetic acid (TFA), tert-Butyl methyl ether

(MTBE), thionyl chloride, Tetrabutylammonium iodide, N,N-diisopropylethylamine, hu-
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man cathepsins B, K, L and S, Whatman® Anotop® 0.02 µm syringe filter and Triton

X-100 were purchased from Sigma Aldrich (St. Louis, MO, USA). ARPE-19 (ATCC CRL-

2302, lot No. 70013110), and DMEM:F12 medium were purchased from the American

Type Culture Collection (Manassas, VA, USA). EZ-LinkTM Amine-PEG2-Biotin, BupH

MES buffer saline pack (2-(N-morpholino)ethanesulfonic acid buffer), EDC (1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride), NHS (N-hydroxysuccinimide), PierceTM

Fluorescence Biotin Quantitation Kit, rapid equilibrium dialysis (RED) 8 K device,

PrestoBlueTM HS Cell Viability Reagent, DMEM with high glucose and pyruvate, Trypsin-

EDTA (0.25%) with phenol, RIPA lysis buffer, Streptavidin DyLight 680, and penicillin/

streptomycin were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Dispos-

able PD-10 desalting columns were purchased from VWR. Dulbecco’s Phosphate Buffered

Saline (DPBS), 1 × phosphate buffered saline (PBS), 10 × PBS, high-performance liquid

chromatography (HPLC) grade acetonitrile, dimethylformamide (DMF), and water were

purchased from Fisher Scientific (Hampton, NH, USA). Mc-Val-Cit-PAB was purchased

from Cayman Chemical (Ann Arbor, MI, USA). Endotoxin-Free Ultra-pure Water were

purchased from MilliporeSigma (Burlington, MA, USA). A Hamilton 1700 Series gas tight

syringes (25 µL, Model 1702 RN, 27 gauge) was purchased from Hamilton Company (Reno,

NV, USA). BD 1 mL TB syringe with 28 G needles were purchased from BD (San Jose,

CA, USA). Isoflurane was purchased from Baxter (Deerfield, IL, USA). Reverse-action for-

ceps were purchased from World Precision Instruments (Sarasota, FL, USA). Neomycin,

polymyxin b, and bacitracin zinc ophthalmic ointment was purchased from Akorn (Lake

Forest, IL, USA).
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2.5.2 Melanin nanoparticle synthesis and characterization

Melanin nanoparticles (mNPs) were synthesized from the eumelanin of Sepia offici-

nalis. In brief, 10 mg/mL of eumelanin was suspended in the DPBS using an ultrasonic

probe sonicator (Sonics, Vibra Cell VCX-750 with model CV334 probe, Newtown, CT,

USA) by pulsing 1 s on/off at 40% amplitude for 30 min in a 4 ◦C water bath. The suspen-

sion was then filtered through a 0.22 µm Millex-GV PVDF filter and transferred to PD-10

desalting columns. The resulting mNPs solution was lyophilized for 7 days and stored at

−20 ◦C until further use. For mNP biotinylation (b-mNPs), mNPs were suspended in 2

mL MES buffer with 2.4 mg of EDC and 3.6 mg of NHS for 15 min at room temperature to

first activate the carboxylic acid groups. To increase the buffer pH above pH 7.4 for amine

reaction, 400 µL of 10 × PBS was directly added to the mixture and incubated for 5 min.

Various amounts of EZ-LinkTM Amine-PEG2-Biotin (5, 15, 20, 30 mg) were reacted with

activated mNPs for 2 or 6 h at room temperature. Since all conditions led to a similar

degree of mNP biotinylation, reaction conditions using 5 mg of amine-PEG2-biotin with

2 h incubation at room temperature was used moving forward. The reaction mixture was

then transferred to PD-10 desalting columns to further collect the b-mNPs. To transfer the

b-mNPs to different solvents (water, pH 6.5 PBS, pH 7.4 PBS) for optimization of the pep-

tide microarray, PD10 columns were first equilibrated with buffer, and then the b-mNPs

were added. Particle size and ζ-potential were determined by dynamic light scattering and

laser Doppler anemometry, respectively, using a Zetasizer Nano ZS90 (Malvern Instru-

ments). Size measurements were performed at 25 ◦C at a scattering angle of 173◦. Samples

were diluted in 10 mM NaCl solution (pH 7), and measurements were performed according
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to instrument instructions. PierceTM Fluorescence Biotin Quantitation Kits were used to

quantify the biotin content on the b-mNPs. B-mNPs (1 mg/mL) were diluted 1:50, 1:100,

1:200 with 1 × PBS and the standard biocytin concentration (10–60 pmol/10 µL) were

freshly prepared for measuring the biotin concentration. Transmission electron microscopy

(H7600; Hitachi High Technologies America) was conducted to determine the morphology

of mNPs and b-mNPs.

2.5.3 Optimization of processing conditions for peptide microarray

A total of 119 peptides, including 8 peptides of length 7 amino acids (aa) and 8 pep-

tides of length 10 aa from the literature [39,40], and 103 random 15 aa peptides generated

with a frequency of 5% for each of the 20 amino acids, were printed in duplicate on peptide

microarrays by PEPperPRINT. The peptide microarrays contained hemagglutinin (HA)

peptides (YPYDVPDYAG; 9 spots) as internal quality controls. Varying screening condi-

tions of the peptide microarray were performed. A spectrum scan of melanin nanoparticles

(mNPs) and biotinylated mNPs confirmed that the autofluorescence was near background

levels after Em = 650 nm. Streptavidin DyLight 680, which was the highest wavelength

(Ex = 675 nm, Em = 705 nm) that PEPperPRINT could use in their peptide microarray

system, was selected to minimize detection of melanin. Two peptide microarray copies

were first pre-stained with streptavidin DyLight680 (0.2 µg/ml) and the control antibody

(manufacturer: BioxCell & PEPperPrint, catalogue numbers: #RT0268, PEPperCHIP®

Mouse Monoclonal anti-HA (12CA5)-DyLight800 Control; 1:2000 dilution or 0.5 µg/ml) in

incubation buffer (pH 6.5 PBS with 0.005% Tween 20 and 10% Rockland blocking buffer
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MB-070) for 45min at room temperature to examine background interactions and internal

quality control. No background interaction of streptavidin DyLight680 or the control anti-

body with the 119 different peptides were observed. To screen the optimal melanin binding

condition, six different washing buffers were prepared: PBS at pH 6.5 with or without

0.005% Tween 20, PBS at pH 7.4 with or without 0.005% Tween 20, and Ultra-pure water

with or without 0.005% Tween 20. The Rockland blocking buffer MB-070 was used to

incubate all peptide microarrays for 30 min before the melanin binding assay. Six different

incubation buffers were formulated with 10% of blocking buffer in the six different wash-

ing buffers mentioned earlier. b-mNPs (10, 100, or 500 µg/ml) in six different incubation

buffers were incubated with the peptide microarray for 16 h at 4 ◦C or room tempera-

ture. All microarrays were subsequently washed with the same type of washing buffers

and incubated with 0.2 µg/mL of streptavidin DyLight680 for 45 min in the same type of

incubation buffer at room temperature for detecting the b-mNPs. The peptide microarrays

were then washed for 3 × 10 s with the same type of washing buffers and proceeded to

quantification of spot intensity. The pilot tests suggested that 500 µg/ mL of biotinylated

mNPs in pH 6.5 PBS buffer at room temperature was optimal (optimal condition shown

in Fig. 2.1d, remaining conditions shown in Fig. A.2. With the optimal flow conditions, 10

of the 16 peptides reported in the literature had detectable fluorescence intensities due to

binding by b-mNPs. Quantification of spot intensities and peptide annotation were based

on the 16-bit gray scale Tag Image File Format files that exhibit a higher dynamic range

than the 24-bit colorized Tag Image File Format files. Microarray image analysis was done

with PepSlide® Analyzer, version 1.4. The software algorithm decomposed fluorescence

intensities of each spot into raw, foreground and background signal, and calculated mean
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median foreground intensities and spot-to-spot deviations of spot duplicates. Based on

mean median foreground intensities, intensity maps were generated and interactions in the

peptide maps highlighted by an intensity color code with red for high and white for low

spot intensities. The PEPperPRINT protocol tolerated a maximum spot-to-spot devia-

tion of 40%, otherwise the corresponding intensity value was zeroed. We labeled the top

20% of peptides ranked by intensities as melanin binding (23 peptides), which included 10

literature-reported peptides with non-zero fluorescent signal. The remaining peptides were

labeled as non-melanin binding (96 peptides).

2.5.4 Random forest classification model training with the pilot 119-peptide

microarray

Random forest is an ensemble tree-based statistical machine learning model and is

robust to variable noise and insensitive to variable scales [38]. Physiochemical variables and

numerical representations of peptides were computed using the R packages Peptides, version

2.4.4 [101] and protr, version 1.6–2 [102]. The resulting 1094 variables include composition,

transition, distribution, autocorrelation, conjoint triad, quasi-sequence-order descriptors,

and pseudo-amino acid and amphiphilic pseudo-amino acid composition descriptors. The

maximum value of lag was set to 6, so the minimum length of a peptide to be analyzed

without generating a missing value is 7. A random forest classification model with 100,000

trees and balanced sampling was trained on the melanin binding data set. The model

was built using the R package randomForest, version 4.7–1.1 [103]. For each tree in the

random forest, a bootstrap sample of ∼63.2% of the melanin binding peptides and the
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same amount of non-melanin binding peptides was generated to construct the tree. The

remaining peptides were considered out-of-bag to the tree and were used to evaluate the

performance of the random forest by calculating the aggregated out-of-bag predictions

across all trees. The out-of-bag class errors were calculated and a classification threshold

of 0.5 proportion of votes was used. As part of the same analysis, permutation variable

importance was obtained with the importance function in the randomForest package. For

each tree in the random forest, out-of-bag instances were permuted for each variable in the

subset, and the decrease in accuracy was recorded. The mean decrease in accuracy for each

variable was calculated over all 100,000 trees and normalized by dividing the mean by the

standard error.

2.5.5 Expansion of the peptide microarray

Melanin binding candidate peptides were generated randomly with a frequency of 5%

for each of the 20 amino acids. Peptides classified as melanin binding by the trained ran-

dom forest model were selected, resulting in 5483 peptides of length ranging from 7 to 12

aa. Along with the 16 known melanin binding peptides from the literature, a total of 5499

peptides were printed in duplicate along with HA controls (YPYDVPDYAG; 68 spots)

on peptide microarrays by PEPperPRINT. Peptide sequences were printed in duplicate

of a custom peptide microarray. Pre-staining of a peptide microarray copy was done with

streptavidin DyLight680 (0.2 µg/ml) and the control antibody (mouse monoclonal anti-HA

(12CA5) DyLight800; 0.5 µg/ml) in incubation buffer to characterize non-specific binding.

Subsequent incubation of another peptide microarray with the b-mNPs at a concentration
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of 500 µg/ml in incubation buffer (PBS at pH 6.5 with 0.005% Tween 20 with 10% Rock-

land blocking buffer MB-070) was followed by staining with streptavidin DyLight680 (0.5

µg/mL) and the control antibody (0.5 µg/mL). The control staining of the HA epitopes

was done simultaneously as internal quality control to confirm the assay quality and the

peptide microarray integrity. Quantification of spot intensities were described earlier in

the previous section.

2.5.6 Variable reduction of the machine learning input data

To reduce the number of variables and improve the model performance, a variable

reduction procedure was applied to the machine learning input data before model training.

Permutation-based variable importance was first computed on the data set with random

forest (100,000 trees) using the R package ranger, version 0.14.1 [104], with balanced sam-

pling for classification analyses. Variables with negative importance values were removed.

Next, subsets of the machine learning data set containing cumulative top-ranked variables

were used to train random forests with 1000 trees, and the models were evaluated by the

Akaike information criterion (AIC). The AIC values classification models were calculated

using the original formula proposed by Akaike [105]: AIC = −2 ln(L̂) + 2k, where L̂ is the

maximum likelihood value, and k is the number of parameters. For regression AIC was

calculated using the likelihood of normal distribution, assuming residuals are normally dis-

tributed: AICreg = N ln(MSE) + 2k, where N is the number of samples, and MSE is the

mean squared error. The classification AIC was based on the likelihood of Bernoulli distri-

bution, and was generalized to multi-class classification: AICclf = 2 · ln 2 · N · Hp(qθ) + 2k,
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where N is the number of samples, Hp is denotes cross entropy, and qθ is the estimated

probability with parameters θ. The variable subset with the lowest AIC value was selected

for each machine learning data set.

2.5.7 Machine learning model training for melanin binding predictions

Peptide variables were computed as described for the melanin binding peptides in

the pilot microarray. Because the distribution of melanin binding fluorescence intensity

was right-skewed, the intensity values were first normalized by log10-transformation for a

balanced response variable. The melanin binding data set was processed using the vari-

able reduction method. To generate the machine learning input data set, less informative

peptide variables were eliminated as described above. A nested cross-validation framework

was then applied to provide an unbiased estimate of the generalization performance. The

framework contains two types of cross-validations. The first includes ten sets of train-test

splits computed using a Monte Carlo sampling method, which is referred to as the outer

loop cross-validation. For each training set in the outer loop, another ten sets of train-test

splits were generated using a modulo method. These cross-validations are referred to as

the inner loop cross-validations. The inner loop cross-validations were used to select the

best-performing model, and the outer loop cross-validation was used to evaluate the whole

machine learning training process.

A wide array of machine learning models, including neural networks [106], gradient

boosting machines (GBM) [107], extreme gradient boosting (XGBoost) [108], generalized

linear model (GLM) [109], (distributed) random forests (DRF) [38], and extremely ran-

42



domized trees (XRT) [110], were employed to train the input data. Hyperparameters for

neural networks, GBM, and XGBoost were selected using the random grid search. Details

about the grids used and the hyperparameters selected can be found in Section A.1 and

the provided code. There were 300 neural networks, 300 GBM models, and 300 XGBoost

models trained for the melanin binding data set, along with five default GBM models,

three default XGBoost models, one GLM, one DRF, and one XRT. The model types and

hyperparameters were defined based on the architecture of H2O AutoML [111]. For non-

tree-based models, variables in the training set were scaled to have zero means and unit

variances. Unstable neural networks with potentially large activation values were removed.

To integrate the models explored, a super learner (SL) model was built using the R

interface of H2O.ai, version 3.38.0.2 [112]. A generalized linear model algorithm (meta-

learner) was used to calculate the coefficients (weighted contributions) of the base machine

learning models according to their holdout predictions generated from the tenfold cross-

validation. The meta-learner was then evaluated with another tenfold cross-validation

trained on the base model holdout prediction data set. Coefficient distributions were col-

lected from the ten cross-validation meta-learner models, resulting in a n×m matrix, where

n is the number of base models, and m = 10 is the number of cross-validation folds. The

original SL algorithm used a meta-learner to calculate base model contributions and did

not emphasize explicit base model selection. To reduce the complexity of SL, we developed

an iterative filtering procedure to improve performance and decrease prediction run time.

Specifically, base models with the number of zero coefficients >5 across cross-validation

folds were removed. The filtering procedure was repeated until there were no base models

or no further reduction of the base models. In addition, SL models with different compo-
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sitions of base models were also constructed for comparison. Homogeneous SL ensembles

were constructed with base models of the same model type (neural networks, GBM, XG-

Boost).

Regression models trained on the melanin binding data were evaluated in each inner

loop cross-validation using multiple metrics, including coefficient of determination (R2),

percent normalized mean absolute error (MAE, less sensitive to outliers), and percent nor-

malized root mean squared error (RMSE). A scoring scheme that calculates the sum of

ranks of all metrics used was applied, and non-parametric Mann–Whitney U tests com-

paring the top model and the rest of the models were conducted to identify competitive

models, with p values adjusted using the Benjamini–Hochberg procedure [113]. Evaluation

results regarding the competitive models whose performances were not significantly differ-

ent from the top model for all evaluation metrics were reported. Next, the top model was

selected from each inner loop cross-validation and evaluated using the corresponding test

sets in the outer loop cross-validation, and the generalization performance was computed

(Table A.1).

Finally, the abovementioned model training procedure was performed on the whole

data set, and the final predictive model was selected based on the same scoring scheme of

the sum of all metric ranks.

2.5.8 Machine learning model training for cell-penetration predictions

Cell-penetrating and non-cell-penetrating peptides of various lengths (10–61 amino

acids) were collected from the SkipCPP-Pred website [31], for which the redundant cell-
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penetrating peptides from the CPPsite2.0 database [32] have been removed, and non-cell-

penetrating peptides were generated randomly [31]. There were 460 cell-penetrating and

462 non-cell-penetrating peptides. Peptide variables were computed as described above

for classification of the melanin binding peptides from the pilot microarray. The variable

reduction procedure as described above was then applied to the data set. A nested cross-

validation framework was employed to generate train-test splits for outer and inner loop

cross-validations. Multiple machine learning models were trained on the cell-penetration

data set, including 100 neural network grid models, 100 GBM grid models, 100 grid XG-

Boost models, five default GBM models, three default XGBoost models, one DRF, and one

XRT. Models were integrated using the SL framework, resulting in SL models separately

containing all base machine learning models, reduced base models, all neural networks, all

GBM models, and all XGBoost models. Balanced sampling was applied where appropriate

for the machine learning algorithms.

Classification models were evaluated with logarithmic loss, Matthews correlation co-

efficient (MCC), F1 (harmonic mean of precision and recall) and balanced accuracy. A

scoring scheme computing the sums of all metric ranks was applied. Competitive models

with no significant difference from the top model in terms of model performance, along

with the means and standard errors of metrics obtained from 10-fold cross-validations were

reported. The top model from each inner loop cross-validation was selected. The gener-

alization performance (Table A.2) was evaluated in the outer loop cross-validation, using

logarithmic loss, MCC, F1, balanced accuracy, enrichment factor (EF), and Boltzmann-

enhanced discrimination of receiver operating characteristic (BEDROC) [114].

The final predictive model was generated by applying the same model training pro-
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cedure on the whole data set. Class prediction thresholds for the final model were selected

based on the maximum F1.

2.5.9 Machine learning model training for cytotoxicity predictions

Toxic and non-toxic peptides of various lengths (4–35 aa) were collected from the

ToxinPred website [33]. Peptides with length <7 were excluded, resulting in 1777 toxic

and 3522 non-toxic peptides. Peptide variables were calculated as described in the random

forest classification section, and non-toxic and toxic peptides were labeled as positive and

negative, respectively. The dimensionality of the data set was reduced using the variable

reduction as described in the above section. A nested cross-validation framework was

applied, and the machine learning models include 100 neural networks, 100 GBM models,

100 XGBoost models, five default GBM models, three default XGBoost models, one GLM,

one DRF, and one XRT. The mean number of peptides in non-toxic and toxic classes was

calculated and used as the number of samples of each class for balanced sampling. Models

were integrated using the SL framework, generating SL models containing all base models,

reduced base models, all neural network models, all GBM models, and all XGBoost models.

The models selected as the top model in each inner loop cross-validation were selected

using the evaluation metrics and the scoring scheme as described for cell-penetration model

training. The generalization performance was computed based on the selected models and

recorded in Table A.3. The final predictive model was generated by performing the above

model training procedure on the whole data set, and the class prediction threshold was

determined by the maximum F1 score.
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2.5.10 Peptide generation for machine learning model validation

Amino acid frequencies at each position were calculated for the 5499 melanin binding

peptides used in the expanded peptide microarray, where the peptides were grouped into 8

sets based on intensity ranges. For each intensity group, random peptides were simulated

based on the position-dependent amino acid frequency. In total, 127 peptides of length

ranging from 7 to 12 were selected, including the TAT47−57 peptide as the reference cell-

penetrating peptide and 7 peptides from the expanded peptide microarray as validation

controls. Melanin binding intensity values were predicted by the reduced melanin binding

SL model. Selected peptide sequences were subsequently analyzed by the cell-penetration

and toxicity final models for further classification.

2.5.11 Peptide synthesis

The library of 127 C-terminal biotinylated peptides used in cell culture experiments

was synthesized by Gene Script using their Crude Peptide Library service. A terminal lysine

was added to each peptide sequence to facilitate biotin conjugation. Peptides from the crude

peptide library were further purified by being first dissolved in 50% acetonitrile (ACN) with

0.1% TFA at 10 mg/mL. Shimadzu LC20 high-performance liquid chromatography (HPLC)

system with Phenomenex reverse-phase preparative HPLC column (Gemini® 10 µm C18

110 Å, LC Column 250 × 21.2 mm, AXIATM Packed) were used to separate and collect

the peptides with an elution gradient of 5/5/90/90/5/5% solvent B (TFA 0.05% in ACN)

at 0/2/10/12/13.5/15 min with a flow rate of 5 mL/min with monitoring at 220 nm.
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2.5.12 Melanin binding assay for machine learning model validation

The mNPs were mixed with C-terminal biotinylated peptides (10 µM) in pH 6.5 PBS

solution and incubated in the rapid equilibrium dialysis (RED) 8 K device for 24 h on

an orbital shaker at 900 rpm. A total of 10 µL of the solution from the rapid dialysis

reservoir was collected. The concentration of unbound biotinylated peptides was analyzed

with the PierceTM Fluorescence Biotin Quantitation Kit. Four sets of melanin binding

assays were performed. Melanin binding was calculated as the difference in free peptide

normalized with the starting peptide concentration. Experimental melanin binding values

of the 127 peptide candidates were compared with the predicted melanin binding values

with the Pearson correlation. Melanin binding predictions larger than 100% were cast to

100% because this was the maximum value in the melanin binding training set.

2.5.13 Cell-penetration assay with ARPE19 cell type for machine learning

model validation

Three 96 well plates per ARPE19 cell type group (melanin-induced or non-melanin

induced) were seeded at 0.01 × 106 cells/well. ARPE-19 cells were either cultured with

DMEM:F12 medium containing 10% FBS according to protocol provided by the vendor

(non-melanin induced) or cultured in DMEM high glucose, pyruvate media with 250 µM

of ferric ammonium citrate [115] for 2 months (melanin-induced) [28]. The expression of

melanin was confirmed visually with bright field microscopy and by measuring absorbance

at 475 nm (>0.4 arb. units) [28]. Within each plate, 12 wells were randomly selected to
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quantify the cell numbers with an automated cell counter (Countess 3 Automated Cell

Counter, Thermo Fisher) for normalization in the cell uptake study. Next, 100 µL (100

µM in pH 6.5 PBS) of each of the 127 C-terminal biotinylated peptides was added to

n = 3 wells for both the induced and non-induced ARPE-19 cells for 6 h at 37 ◦C. The

cells were then washed thoroughly five times with PBS solution to remove extracellular

peptide. To quantify cell-associated peptides, the cells were lysed with 100 µL of RIPA

lysis buffer at 4 ◦C for 48 h. The concentration of intracellular biotinylated peptides was

analyzed with the PierceTM Fluorescence Biotin Quantitation Kit. The mean intracellular

concentration values of the three replicates were then grouped by cell types (melanin-

induced or non-melanin induced), and a two-tailed Mann–Whitney U (Wilcoxon rank-sum)

test was calculated using the wilcox.test function in R. The intracellular concentration

values were also plotted against experimental melanin binding. The relationships between

experimental cell-penetration and melanin binding values in the two ARPE19 cell type

groups were quantified using the Pearson correlation.

2.5.14 Shapley additive explanations (SHAP) analysis of variable contri-

butions

To better characterize variable contributions to peptide property predictions, models

trained on the outer loop training sets with the same hyperparameters as the final predictive

model were used to calculate SHAP values using the corresponding test sets. For each

sample in the test set, the SHAP analysis calculated the additive variable attributions to the

model prediction. Specifically, models were imported using the Python interface of H2O.ai,
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version 3.38.0.2 [116], and the background data set was generated by randomly selecting 100

samples from the training set. Next, SHAP values, with the number of sampling times set

as 1000, were computed using the function KernelExplainer in the Python package SHAP,

version 0.41.0 [37]. The KernalSHAP method calculates variable contributions (SHAP

values) using a local interpretable model-agnostic explanations (LIME) strategy [117]. The

top 20 variables ranked by the difference between the maximum and minimum SHAP values

in the aggregated test set samples were selected and visualized along with the variable values

normalized by percentile ranks.

Explanations of HR97 multifunctional peptide predictions were computed using the

final models trained on the whole machine learning data sets. The same SHAP analysis

method as described above was performed, and the top variables ranked by absolute SHAP

values were visualized as waterfall plots using the function plots.waterfall in the SHAP

package.

2.5.15 Adversarial computational controls

To assess if the model performance evaluation was overly optimistic, and if the ma-

chine learning models have learned the meaningful relationships in the data sets, adversarial

controls were generated by training the models on the data sets with the response variables

randomly shuffled [118]. The same nested cross-validation framework and model selection

procedure as described in the above model training sections were used, and the generaliza-

tion performance was computed with the models selected as the top model from the inner

loop cross-validations. Statistical results of the competitive models from the inner loop
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cross-validations (Section A.1), and the generalization performance of the adversarial con-

trols evaluated in the outer loop cross-validation (Tables A.1–A.3) were reported. Variable

contributions of the adversarial control models having the same hyperparameters as the

final predictive model of each property were computed and visualized as described in the

SHAP analysis section.

2.5.16 Peptide design space visualization

Peptide sequences of the control melanin binding peptides, pilot 119 peptides, ex-

panded 5499 peptides, and 127 peptide candidates for experimental validation were con-

verted using one-hot encoding, and the post-padding was applied for peptides with shorter

lengths. Combined with the union set of variables from the variable-reduction processed

melanin binding, cell-penetration, and cytotoxicity data sets, the new data set was normal-

ized and analyzed using t-Distributed Stochastic Neighbor Embedding (t-SNE), a nonlinear

dimensionality reduction technique, with the Rtsne function in the R package Rtsne, version

0.16 [119]. The t-SNE results were visualized along with the multifunctional predictions.

2.5.17 Traceless linker system for conjugating HR97 to brimonidine

The traceless linker system was designed for release of intact parent drug when trig-

gered by an intracellular chemical and enzymatic event, such as protease cleavage of the

amide bond [120]. Activation of the linker, MC-Val-Cit-PAB-OH (Maleimidocaproyl-L-

valine-L-citrulline-p-aminobenzyl alcohol), was conducted as previously reported with mi-

nor modifications [120]. MC-Val-Cit-PAB-OH (8.68 g, 15.2 mmol) was suspended in DMF
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(43.4 mL) at 0 ◦C with water bath sonication for 30 min. After the solids were fully dis-

persed, thionyl chloride (1.22 mL, 16.7 mmol) was added dropwise. Following the addition,

the reaction was held at 0 ◦C for 45 min and then treated slowly with water (130 mL) to

precipitate a yellow solid (MC-Val-Cit-PAB-Cl), which was collected by filtration. The solid

was washed sequentially with water and MTBE and dried under vacuum (∼30% yield) [120].

Brimonidine base was combined with the MC-Val-Cit-PAB-Cl (1.1 eq) in DMF (0.25 M)

at room temperature. Tetrabutylammonium iodide (0.5 eq) was added to the solution, fol-

lowed by the addition of N,N-diisopropylethylamine (2.5 eq), and the mixture was stirred

for 24 h. The mixture was diluted with 50:50 acetonitrile:water at 40-fold dilution for pu-

rifying the MC-Val-Cit-PAB-brimonidine. A Shimadzu LC20 HPLC system coupled with

photodiode-array detector (PDA) and with Phenomenex reverse-phase preparative HPLC

column (Gemini® 10 µm C18 110 Å, LC Column 250 × 21.2 mm, AXIATM Packed) was used

to separate and collect the conjugates with an elution gradient of 10/90/90/10% solvent

B (TFA 0.05% in ACN) at 1/11/13/15 min with a flow rate of 10 mL/min. The collected

fractions were then transferred to the 20 mL scintillation vials and a Biotage V-10 solvent

evaporator with Volatile mode was used to remove the acetonitrile. The solution fractions

were frozen and lyophilized (∼8% yield). NMR was used to confirm the presence of key

functional groups in the products of each stage of the synthesis, including brimonidine, Mc-

VC-PAB-Cl, and Mc-VC-PAB-brimonidine. All compounds were dissolved in deuterated

DMSO and characterized with a Bruker spectrometer (500 MHz). 1H chemical shifts were

reported in ppm (δ) and the DMSO peak was used as an internal standard. Data were pro-

cessed using TopSpin NMR Data Analysis software, version 4.1.0, from Bruker (Billerica,

MA, USA). The prep-HPLC retention time (RT) of brimonidine, Mc-VC-PAB-brimonidine,
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and Mc-VC-PAB-Cl was 5.1, 9.8, and 11.4 min, respectively. HR97 with cysteine at the C-

terminus as the functional group for linker conjugation (FSGKRRKRKPRC, Mw = 1519,

>97% purity) was conjugated to the quaternary-ammonium-linked brimonidine (MC-Val-

Cit-PAB-brimonidine) via a thiol-maleimide reaction. The MC-Val-Cit-PAB-brimonidine

was first dissolved in 1 mL of PBS at 5 mg/mL. HR97 peptide powder (0.5 eq) was added

directly to the solution. The solution mixtures were adjusted to pH 7.4 and allowed to react

for 2 h at room temperature. The solution mixtures were then added to 1 mL of acetonitrile

and purified with the same prep-HPLC conditions. The collected fraction solutions were

transferred to the 20 mL scintillation vials and the Biotage V-10 solvent evaporator with

volatile mode were used to remove the acetonitrile. The solutions were lyophilized and

stored at −20 ◦C (∼35% yield). For the sample preparation and MALDI-TOF analysis,

the MALDI matrix sinapic acid (10 mg) was dissolved in 1 mL of acetonitrile in water (1:1)

with 0.1% TFA, and 1 µL of sample (50 µM) was deposited on the MALDI sample plate.

The matrix (2 µL, 10 mg/mL) was deposited on the air-dried sample and allowed to air dry

for 10–20 min. The MALDI-TOF MS analysis was performed on a Bruker Voyager DE-

STR MALDI-TOF (Mass Spectrometric and Proteomics core, Johns Hopkins University,

School of Medicine) operated in linear, reflective-positive ion mode.

2.5.18 In vitro melanin binding assay

Brimonidine, HR97-biotin, and HR97-brimonidine at a range of concentrations (3.125,

6.25, 12.5, 25, 50, 100 µg/mL) were dissolved in pH 6.5 PBS solution. The solutions (400

µL) were then mixed thoroughly with 400 µL of 1 mg/mL mNPs in pH 6.5 PBS solution
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and transferred to the inner reservoir of the rapid equilibrium dialysis (RED) device inserts

(8 K MWCO). The outer reservoir was filled with 800 µL of pH 6.5 PBS solution. The

samples were incubated on an orbital shaker with temperature control at 37 ◦C and 300

rpm for 48 h (n = 3). The solutions from outer reservoir (free drug) were than collected

and transferred to an autosampler vial for HPLC analysis (Prominence LC2030, Shimadzu,

Columbia, MD) with photodiode-array detection (PDA) system. Separation was achieved

with a Luna® 5 µm C18(2) 100 Å LC column 250 × 4.6 mm (Phenomenex, Torrance,

CA) at 40 ◦C using isocratic flow. The amount of bound drug was used to calculate the

binding capacity (mol drug/mg melanin) and the dissociation constant (Kd) as previously

described [28, 42].

2.5.19 In vitro stability test for HR97-brimonidine conjugate

Two pairs of human donor eyes were obtained from the Lions Gift of Sight under

protocol IRB00056984 approved by the Johns Hopkins University School of Medicine Insti-

tutional Review Board. Both donors were male with an mean age of 74.5. The post-mortem

times ranged from 35–40 h. The eyes were kept at 4 ◦C during transport and arrived within

48 h post-mortem. The vitreous and aqueous were first isolated and subsequently combined

and filtered through the 0.02 µm syringe filter to remove cell debris. HR97-brimonidine (1

mg/mL) was incubated with human aqueous or vitreous (700 µL) at 37 ◦C (n = 3). On

days 0, 1, 7, 14, 21 and 28, 100 µL of the solutions were collected, diluted with 900 µL of

acetonitrile, and characterized by HPLC (Prominence LC2030, Shimadzu) with Luna® 5

µm C18(2) 100 Å LC column 250 × 4.6 mm (Phenomenex). The elution flow rate was 1
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mL/min and with gradient of 10/90/90/10% solvent B (TFA 0.1% in ACN) in 1/11/13/15

min at λmax = 250 nm for HR97-brimonidine (RT = 4.6 min). The area under the curve

(AUC) on day 0 was used to normalize the AUC calculated on days 1, 7, 14, 21 and 28.

2.5.20 Cathepsin cleavage assay for HR97 and HR97-brimonidine conju-

gate

An assay to demonstrate enzymatic cleavage of the linker was used as previously

described with adaptations [120]. In brief, the HR97-brimonidine conjugate solution (200

µM) was diluted with an equal volume of 100 mM citrate buffer at pH 5.5. Cysteine was

added to a final concentration of 5 mM before the addition of human cathepsins B, K, L,

and S to final concentrations of 150 nM each. The mixture was then incubated for 0 h

(control group) or 48 h at 37 ◦C. The solutions were further diluted with acetonitrile to

1mL and conjugate concentration was measured using the HPLC method described above.

All concentration values are normalized to the HR97-brimonidine at 0 h.

2.5.21 Cell viability assay of HR97 peptide

The PrestoBlueTM HS cell viability system was used to assess cell viability. ARPE-19

cells were seeded at 0.01 × 106 cells/well in 96 well plates and cultured with DMEM:F12

medium containing 10% FBS according to the vendor protocol. After 7 days, 90 µL of

DMEM/F12 containing 0, 1, 5, 10, or 20 mg/mL of the HR97 was added. The cells (n = 5)

were then incubated for 12 h, and viability was measured by adding 10 µL of PrestoBlueTM

HS cell viability reagents at 37 ◦C. After 0.5, 1, 2, 3, 4 and 5 h, absorbance (570 nm and
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600 nm) was measured at 37 ◦C and normalized according to the protocol provided by the

vendor.

2.5.22 Animal studies—Animal welfare statement

Experimental animal protocol (RB21M176) was approved by the Johns Hopkins An-

imal Care and Use Committee. All animals were handled and treated in accordance with

the Association for Research in Vision and Ophthalmology Statement for Use of Animals

in Ophthalmic and Vision Research. Dutch Belted rabbits (4–5 mo) were obtained from

Robinson Services, Inc. Rabbit sex was uniformly distributed and randomly assigned to

each group, which consisted with either 3 male/2 female, or 2 male/3 female for IOP/safety

studies and 2 male/2 female for the pharmacokinetic study.

2.5.23 Rabbit IOP measurements, topical dosing, and ICM injection

For the IOP measurements in normotensive rabbits, Dutch Belted rabbits (2–3 kg)

were used (n = 5). IOP was measured with a hand-held rebound tonometer icareTONOVET

(Vantaa, Finland) in the awake and gently restrained rabbit. Each rabbit was acclimatized

to the IOP measurement procedure for at least 5 days to obtain a stable background IOP

reading. A mean of three IOP measurements for an individual eye were taken every other

day for 6 days (3 times in total) and used as a baseline value. For the ICM injection pro-

cedure, rabbits were anesthetized with ketamine/xylazine and received topical anesthesia

with 0.5% proparacaine hydrochloride. A corneal pre-puncture was performed with a 30 G

needle, followed with a single bolus ICM injection of 200 µg (mass of brimonidine) of HR97-

56



brimonidine or brimonidine tartrate solution in 100 µL saline using a 28 G needle. After

the procedure, topical bacitracin-neomycin-polymyxin ophthalmic ointment was applied to

both eyes to prevent infection and dry eyes. On day 7, an ophthalmologist masked to

treatment evaluate the HR97-brimonidine injected eyes with the following items: function-

ality of lids, lashes, conjunctiva, cornea transparency, pigmentation of corneal endothelium,

depth of anterior chambers, inflammation, fibrin strands, and symmetry of the lens [121].

The lenses were all clear and the iris pigmentation was symmetric. In a separate study, a

corneal pre-puncture was performed with a 30 G needle, followed with a single bolus ICM

injection of 200 µg (mass of brimonidine) containing a physical mixture of unconjugated

HR97 and brimonidine tartrate (HR97 + brimonidine), the equivalent amount of HR97

peptide alone, or saline alone in 100 µL saline. On day 7, day 14, day 21, and day 28,

an ophthalmologist masked to treatment performed the same safety evaluations described

above. IOP was measured on days 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, and 20 after the

ICM injection, and change in IOP from the baseline (∆IOP) was reported. The mean of

three IOP measurements was taken for each eye by one observer, and then confirmed by

a masked observer. Alternatively, a single topical eye drop (Alphagan® P 0.1%, 50 µL)

was given (n = 5). The IOP were measured immediately before the topical dosing (0 h),

and at 2, 4, 6 and 8 h after the eyedrop administration. For the pharmacokinetics studies,

rabbits (n = 4 per group) received a single ICM injection with 200 µg (mass of brimoni-

dine) HR97-brimonidine as described above. Rabbits were sacrificed 1, 7, 14, 28 days after

the injection, and iris, aqueous, and retina were collected for measuring the brimonidine

concentration. One of the iris tissue samples was left out of the analysis in the day 1 group

due to an issue with sample collection.
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2.5.24 Measurement of brimonidine in ocular tissues

Brimonidine concentrations in ocular tissues were measured by liquid chromatography-

tandem mass spectrometry (LC-MS/MS) as previously described [46]. All samples were

collected in pre-weighed tubes and stored at −80 ◦C until processing for analysis. Tissue

samples were homogenized in 100–600 µL 1 × PBS using a Bullet Blender® (Next Advance,

Inc, Troy, NY, USA) before extraction. Brimonidine were extracted from 15 to 50 µL of

tissue homogenates with 50 µL of acetonitrile containing 50/50/2.5 ng/mL of the internal

standards. The top layer was then transferred to an autosampler vial for LC-MS/MS anal-

ysis after centrifugation. All ocular tissue samples were analyzed using a 1 × PBS standard

curve for brimonidine. Separation was achieved with a Waters HSS PFP (2.1 × 50 mm, 1.8

µm). The column effluent was monitored using a 5500 mass-spectrometric detector (Sciex)

using electrospray ionization operating in positive mode. The mobile phase A was water

containing 0.1% formic acid and mobile phase B was acetonitrile containing 0.1% formic

acid. The gradient started with mobile phase B held at 20% for 0.5 min and increased

to 100% over 0.5 min; 100% mobile phase B was held for 1 min and then returned to

20% mobile phase B and allowed to equilibrate for 1 min. Total run time was 3 min with

a flow rate of 0.5 mL/min. The spectrometer was programmed to monitor the following

multiple reaction monitoring (MRM) transition 391.9 → 295.9 for brimonidine and 295.9

→ 216.1 for the internal standard, brimonidine-d4. Calibration curve for brimonidine was

computed using the area ratio peak of the analysis to the internal standard by using a

quadratic equation with a x-2 weighting function over the range of 0.25–500, with dilutions

of up to 1:100 (v:v). Core technicians performing sample and data analysis were masked

58



to treatment group.

2.5.25 Statistical analysis

Statistical analyses of two groups were conducted using two-tailed parametric (Stu-

dent’s t test) or non-parametric (Mann–Whitney U) tests as appropriate. Correlation

coefficients were computed using Pearson correlation (two-tailed). For multiple statistical

testing, p values were adjusted using the Benjamini–Hochberg procedure [113]. Statistical

analyses were performed using GraphPad Prism 9 or R version 4.2.2 (2022-10-31).
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Chapter 3: Engineered Peptide-Drug Conjugate Provides Sustained Pro-

tection of Retinal Ganglion Cells with Topical Administration

in Rats

3.1 Abstract

Effective eye drop delivery systems for treating diseases of the posterior segment have

yet to be clinically validated. Further, adherence to eye drop regimens is often problematic

due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy

for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic

sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic

nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-

forming eye drop delivery system, and an engineered melanin binding and cell-penetrating

peptide that sustains intraocular drug residence time. We found that once daily topical

dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose,

effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular

diseases affecting the posterior segment, the convenience of an eye drop combined with

intermittent dosing frequency could result in greater patient adherence, and thus, improved

disease management.
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3.2 Introduction

Achieving drug delivery to the retina with topical eye drops is a “holy grail” of

ocular drug delivery. Unfortunately, precorneal clearance, ocular tissue barriers such as the

cornea and sclera, and uveal clearance reduce the amount and duration of drug delivery to

posterior segment cells and tissues. Thus, there are no FDA approved eyedrops for treating

diseases of the posterior segment, and patient adherence to many eye drops is limited by

the necessity of dosing multiple times per day [122, 123]. To overcome these challenges, a

drug delivery system that provides longer corneal residence time and increased intraocular

absorption could facilitate increased drug delivery to the retina. In addition, increasing

intraocular drug retention time could further improve drug accumulation and sustain the

duration within the therapeutic window.

We recently described the development of a hypotonic, thermo-sensitive gel-forming

eye drop that provided increased and sustained intraocular drug absorption without in-

creased systemic drug exposure [124]. In addition, we described that sunitinib, a dual

leucine zipper kinase (DLK) and leucine zipper kinase (LZK) inhibitor that promotes reti-

nal ganglion cell (RGC) survival, could be effectively delivered to the posterior segment

using the gel-forming eye drop [125–127]. The combination of enhanced intraocular absorp-

tion provided by the gel-forming eye drop (SunitiGel) and the intrinsic melanin binding

properties of sunitinib led to significant protection of RGCs with only once weekly eye

drop dosing [127]. Studies have shown that ocular melanin could affect drug distribution

and retention in ocular pigmented cells [128], and prolong the effects of certain drugs [129].

Machine learning models have also been developed to predict the melanin binding potential
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of small molecule ophthalmic drugs [130]. We recently described an approach for applying

machine learning to engineer multifunctional peptide adaptors to embody high melanin

binding, cell-penetration, and low cytotoxicity in the same peptide sequence [131]. The

highest performing peptide, HR97, was conjugated to the intraocular pressure (IOP) low-

ering drug brimonidine tartrate, to impart these properties to the peptide-drug conjugate.

We demonstrated that a single intracameral injection of the HR97-brimonidine conjugate

provided a larger IOP reduction in normotensive rabbits that lasted for up to 18 days,

which was significantly longer than injection of brimonidine alone (7 days), or topical bri-

monidine tartrate eye drops (Alphagan®, 8 h). Accumulation of the HR97-brimonidine

conjugate in the melanin containing cells of the iris likely contributed to the magnitude

and duration of the therapeutic effect in the anterior segment.

In this work, we hypothesized that conjugation of the engineered multifunctional

peptide adaptors to sunitinib for delivery to the posterior segment using the gel-forming

eye drop would provide even more prolong therapeutic effects in the posterior tissues.

We observed that the HR97-sunitinib conjugate had increased binding capacity to ocular

melanin and was cleaved by proteases to release free sunitinib in vitro. Rats were dosed

topically with HR97-SunitiGel once daily for seven days, followed by optic nerve head crush

at various times after the last dose to assess the duration of RGC protection. We observed

that the HR97-SunitiGel showed prolonged neuroprotective effects for up to 2 weeks after

the last topical dose, whereas the protective effect of SunitiGel was only observed at 1 week

after the last dose. Our observations support the potential for improving and prolonging

therapeutic delivery to the posterior segment tissues by addressing multiple barriers to

drug delivery and retention in the eye.
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3.3 Results

3.3.1 Conjugation of HR97 peptide to sunitinib increases melanin binding

in vitro

We developed a scheme for conjugating HR97 to sunitinib via a quaternary-ammonium

traceless linker system and structurally confirmed each intermediate product by NMR,

HPLC, and MALTI-TOF (Figs. B.1–B.5). When incubated in human vitreous and aque-

ous fluids ex vivo for 28 days, only ∼15% (Fig. 3.1a) and ∼5% (Fig. 3.1b) of the sunitinib

were released. In contrast, upon incubation with supraphysiological concentrations of hu-

man cathepsins to enzymatically cleave the linker, ∼72% of the sunitinib was released

within 48 h (Fig. 3.1c, Fig. B.6). The conjugation of HR97 to sunitinib increased the

solubility to 56-fold compared to sunitinib base and 5.5-fold compared to sunitinib malate

(Fig. 3.1d). Although sunitinib already shows relatively high intrinsic melanin binding

properties compared to other ophthalmic drugs, conjugation to HR97 provided a 1.3-fold

increase in melanin binding capacity compared to sunitinib in vivo (Kd 7.30 × 10−6 M

vs. 5.51 × 10−6 M) (Fig. 3.2a). Additionally, HR97-sunitinib provided a 2.2-fold increase in

cell uptake compared to sunitinib in non-induced ARPE-19 cells (Fig. 3.2b). When incu-

bated with ARPE-19 cells induced to produce melanin, HR97-sunitinib provided a 1.4-fold

increase in cell uptake compared to sunitinib (Fig. 3.2b).
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Figure 3.1 Characterization of HR97-sunitinib stability and solubility. In vitro stability
of HR97-sunitinib conjugate in (a) human vitreous and (b) human aqueous humor for 28 days.
The amount of HR97-sunitinib remaining was normalized to the starting concentration (n = 3).
Data are presented as mean ± SD. c Cathepsin cleavage assay of the HR97-sunitinib conjugate.
HR97-sunitinib was incubated with human cathepsin cocktails (Cathepsin) or buffer only (Con-
trol) for 48 h at 37 ◦C (n = 3). The amount of HR97-sunitinib remaining was normalized to the
starting concentration (n = 3). Data are presented as mean ± SD, p-value = 0.0002. d Conju-
gation to HR97 increased the intrinsic solubility of sunitinib compared to sunitinib free base and
sunitinib malate salt (n = 3). Data are presented as mean ± SD, ∗p < 0.01 compared to sunitinib
base.

64



Figure 3.2 Characterization of HR97-sunitinib melanin binding and cell uptake in
vitro. a In vitro melanin binding capacity and dissociation constant of HR97-biotin [131], HR97-
sunitinib, and sunitinib malate (n = 3). Lower dissociation constant indicates stronger binding.
Data are precented as mean ± SD. b ARPE-19 cells were cultured under normal conditions
(ARPE) or under conditions that induce melanin production (induced ARPE) and incubated
with sunitinib malate or HR97-sunitinib for 6 h. The cells were then collected and washed prior
to extracting sunitinib. Drug content was normalized to per 1 million cells. Data are shown as
mean ± SD, n = 3.

3.3.2 A deep learning object detection model was more accurate in count-

ing RGCs

A key aspect of assessing neuroprotective capacity involves counting RGCs in different

regions of flat-mounted retina tissues. Manual cell counting can be time-consuming, so we

sought to develop a reliable, automated image analysis method. We used RGC images to

train SSD- MobileNet (Fig. B.7) and Faster R-CNN with Inception Resnet v2 (Fig. B.8)

models, both of which are often used in the object detection research [132,133]. The Faster

R-CNN with Inception Resnet v2 performed well in both high (>60) and low (<20) cell

density image conditions (r = 0.993), whereas the SSD-MobileNet slightly over-performed

when the RGCs density was high in the images (Fig. 3.3a, b). The two object detection

65



models were then compared to CellProfiler Analyst, a well-established open-source program

for cell classification and recognition. The prediction results generated by CellProfiler

Analyst were more vulnerable to the quality of the images, with lower prediction accuracies

for both high and low cell density images compared to the deep learning object detection

models (r = 0.947) (Fig. 3.3c). We further demonstrated the capability of Faster R-CNN

inception Resnet v2 in identifying the RGCs in various RGCs image conditions, such as

high and low cell density, oversaturated, and dim image settings (Fig. 3.3d–i). We used

the trained Faster R-CNN with Inception Resnet v2 model (hereafter referred to as the cell

counting program) to assess retinal images collected from a time-course study of the rat

ONH crush animal model to identify the optimal screening window for a neuroprotection

drug delivery study (Fig. B.9a). The quantification results using the cell counting program

showed that the number of surviving RGCs decreased most rapidly between days 4 and

11 after the optic nerve head crush, and the curve started to flatten 11 days after the

procedure (Fig. B.9b). Thus, a period of 7 days after the crush procedure was selected as

the timeframe to assess RGC protection.

3.3.3 HR97-SunitiGel showed prolonged neuroprotective effects compared

to SunitiGel

We next tested the potential duration of neuroprotection after topical dosing of HR97-

SunitiGel. Brown Norway rats were dosed with HR97-SunitiGel or SunitiGel daily for 7

days, the optic nerve head crush procedure was performed on day 0, 7, or 21 after the last

topical dose, and the RGC survival was characterized 7 days after the injury (Fig. 3.4a).
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Figure 3.3 Comparison between SSD-MobileNet, Faster R-CNN Inception ResNet
v2, and CellProfiler software. A total of 173 images with 4247 manual labeled cells from
both healthy and ONH crushed retinas were used to train the SSD-MobileNet and Faster R-
CNN Inception ResNet v2 models. The same image sets were used as inputs to CellProfiler for
generating the features. Simple linear correlations between automated and manual quantification
of 200 RGCs 40X images were calculated and the Pearson correlation coefficient (r) are noted.
a SSD-MobileNet (epoch 51,350), r = 0.975, which is significant with the p-value threshold of
0.0001 (two-tailed). b Faster R-CNN Inception ResNet v2 (epoch 13,683), r = 0.993, which is
significant with the p-value threshold of 0.0001 (two-tailed). c The random forest classifier was
used in CellProfiler Analyst, r = 0.947, which is significant with the p-value threshold of 0.0001
(two-tailed). Among the three different platforms, the Faster R-CNN model more accurately
quantified cells in images with (d) oversaturated and crowded RGCs; (e) mid-density RGCs; (f)
low brightness RGCs; (g) mid-density, low brightness RGCs; (h) low density RGCs; and (i) low
density, low brightness RGCs. Scale bar = 50 µm.
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The RGC quantification results computed by the cell counting program showed that the

neuroprotective effect of HR97-SunitiGel lasted for at least 2 weeks after the last dose

(869.2 ± 58.86 RGCs/mm2 compared to sham, 623.7 ± 70.39 RGCs/mm2, Fig. 3.4b), with

the effect waning 4 weeks after the last dose (692.2 ± 96.58 RGCs/mm2, Fig. 3.4c). In con-

trast, SunitiGel provided significant RGC protection at 1 week (846.4 ± 125.8 RGCs/mm2)

compared to the sham group, with protection waning 2 weeks after the last dose (717.3 ±

59.94 RGCs/mm2, Fig. 3.4d).

3.3.4 HR97-SunitiGel provided increased intraocular residence time in rats

and therapeutically relevant drug delivery to the posterior segment

in rabbits

Based on the improved efficacy of HR97-SunitiGel at the 2-week timepoint com-

pared to SunitiGel, pharmacokinetic characterizations were conducted in rats to determine

differences in intraocular drug concentrations. At week 2 after the last topical dose, HR97-

SunitiGel provided 52-fold (362.2 ng/g vs. 7.0 ng/g), 21-fold (2430.0 ng/g vs. 116.4 ng/g),

and 1.3-fold (7824.6 ng/g vs. 6093.5 ng/g) higher concentrations of combined sunitinib and

N-desethyl sunitinib in the rat retina, choroid/RPE, and iris/ciliary body, respectively,

compared to SunitiGel (Fig. 3.5a). To subsequently confirm that therapeutically relevant

drug concentrations could be achieved in the larger eyes, rabbits were dosed once daily for

seven days with HR97-SunitiGel or SunitiGel. At 2 h after the last dose, HR97-SunitiGel

provided 4.5-fold (27.8 ng/g vs. 6.1 ng/g), 4.7-fold (54.5 ng/g vs. 11.5 ng/g), and 3.8-fold

(182.8 ng/g vs. 48.5 ng/g) higher concentrations of combined sunitinib and N-desethyl suni-
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Figure 3.4 HR97-SunitiGel extended RGC protection to at least 2 weeks after the
last topical dose in rat model of optic nerve injury. a Schematic showing the schedule
for dosing HR97-SunitiGel (5 µL of 1 mg/mL equivalent sunitinib concentration) relative to the
timing of the optic nerve head (ONH) crush procedure. Brown Norway rats were dosed daily for 7
days and the ONH was crushed on day 0, 7, or 21 after the last dose. After 7 days, the retinas were
harvested and stained with DAPI (blue) and RBPMS (red) for RGC counting. b Representative
images with RGCs identified by the cell counting program outlined with green bounding boxes.
Scale bar = 50 µm. c HR97-SunitiGel provided significant neuroprotective effects for up to 2
weeks after the last dose, with the effect waning after 4 weeks. Data are presented as mean ± SD
(n = 9–12 per group), ∗p < 0.05. d SunitiGel provided neuroprotection for up to 1 week after the
last dose with the effect waning after 2 weeks. The dotted line represents the mean RGC density
in the Sham group. Data are presented as mean ± SD (n = 5–12 per group), ∗p < 0.05 compared
to the sham group, #p < 0.05 compared to SunitiGel.
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Figure 3.5 Characterization of intraocular drug concentrations after topical dosing
with SunitiGel or HR97-SunitiGel in rats and rabbits. a Brown Norway rats were dosed
unilaterally with SunitiGel or HR97-SunitiGel once daily for 7 days, and ocular tissues were
collected 14 days after the last dose (consistent with the 2-week dosing regimen shown in Fig. 3.4a).
Combined levels of sunitinib and N-desethyl sunitinib were reported per tissue sample. Data are
presented as mean ± SEM (n = 6 per group). b Dutch Belted rabbits were dosed unilaterally
with SunitiGel or HR97-SunitiGel once daily for 7 days, and ocular tissues were collected 2 h
after the last dose. Combined levels of sunitinib and N-desethyl sunitinib were reported per tissue
sample. Data are presented as mean ± SEM (n = 4 per group).

tinib in the rabbit retina, choroid, and iris, respectively, compared to SunitiGel (Fig. 3.5b).

Importantly, the concentrations of sunitinib in the rabbit retina were comparable to con-

centrations found to be protective in the optic nerve crush model in rats [127].

3.4 Discussion

Patient adherence is important in treatment of chronic ocular diseases such as glau-

coma, wherein patients must chronically apply IOP lowering eye drops. Typically, only

40%–75% of patients adhere to glaucoma drop therapy regimens, even in scenarios where

the patients know they are being monitored and were provided free medication [134–136].

Failure to use medications as prescribed contributes to the progression of disease and can

potentially lead to vision loss. Here, we investigate a complementary strategy to IOP
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lowering, which is to directly target survival of the RGCs independent of IOP [125, 126].

In this scenario, there is an added challenge of achieving effective drug delivery to the

posterior segment with an eye drop, which is limited by ocular tissue barriers and uveal

clearance [135,137,138]. Designing a drug delivery system that can effectively deliver drugs

to the posterior segment for neuroprotection, utilizing a non-invasive administration ap-

proach, and providing prolonged therapeutic effect to reduce dosing frequency may address

several unmet needs in glaucoma management.

Melanin is a biopolymer that resides within melanosomes in pigmented ocular tissues,

such as the retinal pigment epithelium (RPE), choroid, iris, and ciliary body [128, 139].

Melanin can be further classified as eumelanin and pheomelanin. Though the amount of

pheomelanin in the eye is more variable in different populations, the amount of eumelanin in

the RPE, pigmented ciliary epithelium, and iris pigment epithelium is relatively consistent

regardless of skin and eye pigmentation [128]. There is an increasing amount of evidence

indicating that binding to ocular melanin could affect the intraocular distribution and

pharmacodynamics of small molecule drugs. For example, studies have shown that in

pigmented rabbits atropine had prolonged residence time [140], and pilocarpine induced

a sustained miotic response [141]. Further, drug-melanin interactions and the amount of

free versus melanin-bound drug have been characterized in retinal pigment epithelium cells

[128, 142–144], so have the correlation between in vitro cell uptake and in vivo intraocular

pharmacokinetics [130, 145]. Additionally, machine learning models have been applied to

melanin binding data comprised of 3400 small molecule drugs to predict how structural

properties impact melanin binding [130].

Cell-penetrating peptides, including TAT, penetratin, and poly-arginine (R6 or R8),
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have been utilized for delivering drugs to the anterior or posterior segments of the eye

[146–150]. In a recent study, researchers developed a novel peptide-dexamethasone con-

jugate composed of a cell-penetrating peptide, an enzyme-cleavable linker, and dexam-

ethasone conjugated via a hydrazone bond. Following intravitreal injection, the conjugate

remained stable in the vitreous, and the dexamethasone was released via intracellular in-

teraction with cathepsin D, thus offering a distinctive approach for sustained drug delivery

to the posterior segment of the eye [150]. In our previous work, we leveraged a super

learning-based methodology to engineer multifunctional peptides that are cell-penetrating,

melanin binding, and have low cytotoxicity [131]. We demonstrated that conjugating the

IOP lowering drug, brimonidine tartrate, to an engineered multifunctional peptide (HR97)

significantly increased the IOP lowering efficacy for up to 18 days, with a 17-fold increased

area under the curve compared to brimonidine solution after a single intracameral injec-

tion in rabbits [131]. We also showed that SunitiGel effectively protected RGCs in the

rat optic nerve head crush model with once weekly dosing with no evidence of toxicity in

healthy eyes [127]. Here, by conjugating HR97 peptide to sunitinib, topical delivery of

HR97-SunitiGel effectively protected RGCs for at least 2 weeks after the last topical dose.

RGC identification and quantification are often employed in studies investigating cell

and vision loss in glaucoma [125, 126, 151, 152]. The cell quantification has often been

conducted manually by masked individuals hand-counting the cells [126, 127] or using the

Image J software [153,154]. Recently, the open-source CellProfiler and CellProfiler Analyst

have received considerable attention for quantification of the cells because of its user-friendly

interface, flexible analysis module, and integration of machine learning algorithms [155,156].

Although CellProfiler provides an automatic pipeline for quantifying cells, the accuracy is
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heavily reliant on image quality. Commercial software, such as Metamorph (BioVision,

Waltham, MA), Cellomics (Thermo Fisher), or TruAI deep-learning technology (Olympus)

provide a convenient user interface and pre-designed modules to process and quantify cell

images, but with annual subscription fees. The RGC quantifier developed in this study

is based on the open source TensorFlow deep learning object detection system with the

Faster R-CNN model. Although the model was trained on a relatively small image set, our

cell counting program provided a high accuracy with increased flexibility to detect cells

in images with varying cell densities and image qualities. Moreover, the model could be

further trained with more confocal images in the future to accommodate different RGC

staining qualities or expand to various systems of glaucoma animal models via transfer

learning.

Although promising, our study is not without limitations. Previously, the cell cul-

ture model system highlighted the increase in uptake and retention provided by the HR97

peptide in vitro [131], yet the effects were less prominent here with a drug that is intrinsi-

cally melanin binding. Similarly, the in vitro melanin binding assay showed significant but

relatively minor increases in melanin binding capacity and affinity. However, the increased

melanin binding capacity of the HR97-sunitinib conjugate paired with the increased po-

tential for cell-penetration did sustain the pharmacokinetic and pharmacodynamic effects

of sunitinib in the ONH rat model in vivo. Though the pharmacokinetic analysis revealed

higher sunitinib concentrations in the ocular tissues of rats than in rabbits, the sunitinib

concentrations achieved in the retina of rabbits with topical HR97-SunitiGel dosing were

similar to what was previously found to be efficacious in the rat ONH crush model [127].

The data support the frequently described phenomenon that rodent models are not suffi-
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cient for predicting drug delivery to the posterior segment with topical eye drops, and that

confirmation in larger species is necessary [124]. Further, the choice of a cathepsin-labile

linker was based on the fact that cathepsins are mainly found intracellularly, and they are

only present in minute quantities in extracellular fluids such as vitreous and aqueous hu-

mor [157–160]. However, characterization of the linker cleavage and sunitinib release rate in

cells and potential refinement of the linker chemistry may further prolong the therapeutic

effect. Additionally, though we did demonstrate delivery of therapeutically relevant drug

concentrations in rabbits, therapeutic efficacy has yet to be confirmed. Further, confirming

the potential sustained therapeutic effects of the loading dosing approach followed by the

intermittent dosing regimen (e.g., once daily dosing for seven days followed by dosing once

every 2 weeks) should be confirmed in large animals. Similarly, though we did not see any

evidence of toxicity with intracameral injections of HR97-brimonidine and HR97 alone in

rabbits [131], more thorough studies of intraocular biocompatibility would be an important

next step in the development of HR97-SunitiGel. The intrinsic melanin binding capacity

of sunitinib limited the potential margin of benefit that could be observed for the duration

of therapeutic effect provided by the HR97 conjugation, though we anticipate that more

drastic improvements may be achievable for other drugs with low intrinsic melanin binding.

3.4.1 Conclusion

The development of innovative drug delivery systems that can overcome ocular bar-

riers and enhance drug retention in the eye is essential for successful treatment of posterior

segment diseases. Our study demonstrated that the HR97-sunitinib conjugate delivered
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via gel-forming eye drops (HR97-SunitiGel) provided increased sunitinib delivery to the

posterior segment of rats and rabbits and prolonged neuroprotective effect for up to two

weeks after the last dose in rats. Overall, the results obtained here demonstrate the benefits

of increasing the melanin binding and cell penetration of small molecule drugs in the eye.

The potential for developing topical eye drop delivery systems that can not only provide

effective drug delivery to the posterior segment of the eye, but also require less frequent

application, would be of high value clinically and in improving patient quality of life.

3.5 Methods

3.5.1 Material sources

Sunitinib base and sunitinib malate were purchased from LC laboratories (Woburn,

MA, USA). Eumelanin from Sepia officinalis, 0.22 µm Millex-GV PVDF filter, ferric am-

monium citrate, bovine serum albumin (BSA), Tween 20, fetal bovine serum (FBS), tri-

fluoroacetic acid (TFA), tert-Butyl methyl ether (MTBE), thionyl chloride, tetrabutylam-

monium iodide, N,N-diisopropylethylamine, human cathepsins B, K, L, and S, Whatman®

Anotop® 0.02 µm syringe filter, Poloxamer 407, and Triton X-100 were purchased from

Sigma Aldrich (St. Louis, MO, USA). ARPE-19 cells (CRL-2302) and DMEM:F12 medium

were purchased from the American Type Culture Collection (Manassas, VA, USA). Rapid

equilibrium dialysis (RED) 8 K device, DMEM with high glucose and pyruvate, Trypsin-

EDTA (0.25% w/v) with phenol, RIPA lysis buffer, RNA binding protein, mRNA pro-

cessing factor (RBPMS) rabbit anti rat polyclonal antibody, Alexa Fluor 555 conjugated

goat anti-rabbit IgG (H + L) secondary antibody, penicillin/streptomycin, 4’,6-diamidino-

75



2-phenylindole, dihydrochloride (DAPI), Fluoromount-G, Image-iTTM Fixative Solution

(4% w/v formaldehyde, methanol-free), and penicillin/streptomycin were purchased from

Thermo Fisher Scientific (Waltham, MA, USA). Disposable PD-10 desalting columns were

purchased from VWR (Radnor, PA, USA). Dulbecco’s Phosphate Buffered Saline (DPBS),

1 × phosphate buffered saline (PBS), 10 × PBS, high-performance liquid chromatography

(HPLC) grade acetonitrile (ACN), dimethylformamide (DMF), and water were purchased

from Fisher Scientific (Hampton, NH, USA). Mc-Val-Cit-PAB was purchased from Cay-

man Chemical (Ann Arbor, MI, USA). Endotoxin-free ultra-pure water was purchased from

Millipore Sigma (Burlington, MA, USA). Isoflurane was purchased from Baxter (Deerfield,

IL, USA). Reverse-action forceps were purchased from World Precision Instruments (Sara-

sota, FL, USA). Neomycin, polymyxin b, and bacitracin zinc ophthalmic ointment were

purchased from Akorn (Lake Forest, IL, USA).

3.5.2 Traceless linker system for conjugating HR97 to sunitinib

The traceless linker system was designed for the release of intact parent drug when

triggered by an intracellular chemical and enzymatic event, such as protease cleavage of

the amide bond [161]. Activation of the linker, MC-Val-Cit-PAB-OH (maleimidocaproyl-

L-valine-L-citrulline-p-aminobenzyl alcohol), was conducted as previously described with

minor modifications [131, 161]. MC-Val-Cit-PAB-OH (8.68 g, 15.2 mmol) was suspended

in DMF (43.4 mL) at 0 ◦C with water bath sonication for 30 min. After solids were

fully dispersed, thionyl chloride (1.22 mL, 16.7 mmol) was added dropwise. Following the

addition, the reaction was held at 0 ◦C for 45 min and then treated slowly with water (130
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mL) to precipitate a yellow solid (MC-Val-Cit-PAB-Cl), which was collected by filtration.

The solid was washed sequentially with water and MTBE and dried under vacuum (∼30%

yield) [161]. Sunitinib base was combined with MC-Val-Cit-PAB-Cl (1.1 eq) in DMF

(0.25 M) at room temperature. Tetrabutylammonium iodide (0.5 eq) was added to the

solution, followed by the addition of N,N-diisopropylethylamine (2.5 eq), and the mixture

was stirred for 24 h. The mixture was diluted with 50:50 acetonitrile:water at 40-fold

dilution for purifying MC-Val-Cit-PAB-sunitinib. A Shimadzu LC20 HPLC system coupled

with the photodiode array detector (PDA) and the Phenomenex reverse-phase preparative

HPLC column (Gemini® 10 µm C18 110 Å, LC Column 250 × 21.2 mm, AXIATM Packed)

was used to separate and collect the peptide-drug conjugates with an elution gradient of

10/90/90/10% v/v solvent B (TFA 0.05% v/v in can) at 1/11/13/15 min with a flow rate

of 10 mL/min. The collected fractions were then transferred to the 20 mL scintillation vials

and a Biotage V-10 solvent evaporator with volatile mode was used to remove ACN. The

solution fractions were frozen and lyophilized (∼7% yield). Nuclear magnetic resonance

(NMR) spectroscopy was used to confirm the presence of key functional groups in the

products at each stage of the synthesis, including sunitinib base, Mc-VC-PAB-Cl, and Mc-

VC-PAB-sunitinib. All compounds were dissolved in deuterated DMSO and characterized

with a Bruker spectrometer (500 MHz). 1H chemical shifts were reported in ppm (δ) and

the DMSO peak was used as an internal standard. Data were processed using TopSpin

NMR Data Analysis software, version 4.1.0, from Bruker. HR97 with cysteine at the

C-terminus as the functional group for linker conjugation (FSGKRRKRKPRC, MW 1.5

kDa, >97% purity from Thermo Fisher peptide custom service) was conjugated to the

quaternary-ammonium-linked sunitinib (MC-Val-Cit-PAB-sunitinib) via a thiol-maleimide
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reaction. The MC-Val-Cit-PAB-sunitinib was first dissolved in 1 mL of PBS at 5 mg/mL,

and the HR97 peptide powder (0.5 eq) was added. The solution mixture was adjusted to pH

7.4 and allowed to react for 2 h at room temperature. The solution was then added to 1 mL

of acetonitrile and purified with the same prep-HPLC conditions. The collected fractions

were transferred to 20 mL scintillation vials and a Biotage V-10 solvent evaporator with

volatile mode was used to remove ACN. The solutions were lyophilized and stored at −20 ◦C

(∼29% yield). For the sample preparation and MALDI-TOF analysis, the MALDI matrix

sinapic acid (10 mg) was dissolved in 1 mL of acetonitrile in water (1:1) with 0.1% TFA,

and 1 µL of sample (50 µM) was deposited on the MALDI sample plate. The matrix (2 µL,

10 mg/mL) was deposited on the air-dried sample and allowed to air dry for 10–20 min.

The MALDI-TOF MS analysis was performed on a Bruker Voyager DE-STR MALDI-TOF

(Mass Spectrometric and Proteomics core, Johns Hopkins University, School of Medicine)

operated in linear, reflective-positive ion mode.

3.5.3 In vitro stability test for HR97-sunitinib conjugate

Two pairs of human donor eyes were obtained from the Lions Gift of Sight under

protocol IRB00056984 approved by the Johns Hopkins University School of Medicine Insti-

tutional Review Board. Both donors were male with a mean age of 74.5. The post-mortem

times ranged from 35 to 40 h. The eyes were kept at 4 ◦C during transport and arrived

within 48 h post-mortem. The vitreous from each eye was isolated, combined, and filtered

through a 0.02 µm syringe filter to remove cell debris. The aqueous was similarly combined

and filtered. Each fluid type was aliquoted into 3 replicates (700 µL) and HR97-sunitinib
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(1 mg/mL) was added, and the mixture was incubated at 37 ◦C (n = 3). On day 0, 1,

7, 14, 21, and 28, 100 µL of the supernatant was collected, diluted with 900 µL of ACN,

and characterized by HPLC (Prominence LC2030, Shimadzu) with Luna® 5 µm C18(2)

100 Å LC column 250 × 4.6 mm (Phenomenex, Torrance, CA). Separation was achieved

with a Luna® 5 µm C18(2) 100 Å LC column 250 × 4.6 mm (Phenomenex) at 40 ◦C using

isocratic flow (1 mL/min 60% TFA 0.1% in ACN). HR97-sunitinib was detected at λmax

= 420 nm (HR97-sunitinib retention time = 1.9 min). The area under the curve (AUC) at

day 0 was used to normalize the AUCs calculated at days 1, 7, 14, 21, and 28.

3.5.4 Cathepsin cleavage assay for HR97-sunitinib conjugate

An assay to demonstrate enzymatic cleavage of the linker was used as previously

described with adaptations [131,161]. In brief, the HR97-sunitinib conjugate solution (200

µM) was diluted with an equal volume of 100 mM citrate buffer at pH 5.5. Cysteine was

added to a final concentration of 5 mM before the addition of human cathepsins B, K,

L, and S (150 nM each). The mixture was then incubated from 0 h (control group) to

48 h at 37 ◦C. The solutions were further diluted with ACN to 1 mL and the conjugate

concentration was measured using the HPLC method described above. The concentration

of HR97-sunitinib at 0 h was used to normalize the ratio remaining at later time points.

3.5.5 In vitro melanin binding assay

Melanin nanoparticles (mNPs) were synthesized from the eumelanin of Sepia offic-

inalis as previously described [131]. In brief, 10 mg/mL of eumelanin was suspended in
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DPBS using an ultrasonic probe sonicator (Sonics, Vibra Cell VCX-750 with model CV334

probe, Newtown, CT, USA) by pulsing 1 s on/off at 40% amplitude for 30 min in a 4 ◦C

water bath. The suspension was then filtered through a 0.22 µm Millex-GV PVDF filter

and transferred to PD-10 desalting columns. The resulting mNPs solution was lyophilized

for 7 days and stored at −20 ◦C until further use. Sunitinib malate and HR97-sunitinib at a

range of concentrations (12.5, 25, 50, 100 µg/mL) were dissolved in pH 6.5 PBS solution in

3 replicates. The solutions (400 µL) were then mixed thoroughly with 400 µL of 1 mg/mL

mNPs in pH 6.5 PBS solution and transferred to the inner reservoir of the rapid equilibrium

dialysis (RED) device inserts (8 K MWCO). The outer reservoir was filled with 800 µL of

pH 6.5 PBS solution. The samples were incubated on an orbital shaker with temperature

controlled at 37 ◦C and 300 rpm for 48 h. The solutions from outer reservoir (free drug)

were then collected and transferred to an autosampler vial for HPLC analysis (Prominence

LC2030, Shimadzu, Columbia, MD) with the photodiode-array detection (PDA) system.

Separation was achieved with a Luna® 5 µm C18(2) 100 Å LC column 250 × 4.6 mm

(Phenomenex, Torrance, CA) at 40 ◦C using isocratic flow. The amount of bound drug

was used to calculate the binding capacity (moles drug/mg melanin) and the dissociation

constant (Kd) as previously described [127, 162]. The data point of HR97 conjugated to

biotin for the high-throughput melanin binding screening assay was originally shown in our

previous work [131].
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3.5.6 In vitro cell uptake assay

The ARPE-19 cells and the induction of melanin expression in ARPE-19 cells were

cultured as previously described [127]. One million ARPE-19 cells cultured for 2 months

were collected for each condition and plated in 6-well plates for another 48 h. Sunitinib

malate and HR97-sunitinib (25 µg/mL equivalent of sunitinib) in PBS were added to the

cells for 6 h at 37 ◦C. The cells were then washed for 3 times with PBS using centrifugation

at 3000 rcf for 5 min. After the last wash, the cells were incubated in acetonitrile at room

temperature for 24 h to extract the drug. The samples were then centrifuged at 17,000 rcf

at 37 ◦C for 30 min, and the supernatant was collected to measure the drug concentration

using HPLC as described above.

3.5.7 Characterization of drug solubility

To measure solubility, 1 mg of sunitinib malate, sunitinib base, or HR97-sunitinib was

placed in microcentrifuge tubes with 0.2 mL of PBS. The samples were then placed on an

orbital shaker (150 rpm) in an incubator at 37 ◦C. After 7 days, samples were collected and

centrifuged at 17,000 rcf for 30 min. The supernatants were collected, and concentrations

were measured using HPLC as described above for sunitinib. Supernatant samples were

mixed 1:10 with ACN containing 0.1% v/v TFA. ACN and water were used as a mobile

phase at a ratio of 55:45. Samples were eluted isocratically at a flow rate of 1 mL/min

through a C18-reversed phase column at 40 ◦C. UV absorbance was monitored at 420 nm.
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3.5.8 Animal studies—Animal welfare statement

All experimental protocols were approved by the Johns Hopkins Animal Care and Use

Committee. All animals were handled and treated in accordance with the Association for

Research in Vision and Ophthalmology Statement for Use of Animals in Ophthalmic and

Vision Research. Equivalent numbers of both male and female animals were used. Brown

Norway rats (6–10 weeks) were obtained from Harlan/ Envigo. Dutch Belted rabbits (4–5

mo) were obtained from Robinson Services, Inc.

3.5.9 Rat optic nerve head (ONH) crush model

We previously described that the delivery of sunitinib malate in SunitiGel provided

sustained RGC protection with once weekly dosing in an optic nerve head (ONH) crush

model [127]. The model was implemented similarly to investigate the timing of quantifi-

cation of RGCs in the time-course study and the potential benefit of the HR97 peptide

conjugation. In the time-course study, Brown Norway rats received the optic nerve head

crush on day 0, and on day 1, 4, 7, 11, 14, or 19, the retinas were harvested and stained

with DAPI and RBPMS for quantifying the remaining RGCs using the AI deep learning

algorithm (n = 6). In the HR97-SunitiGel RGC protection study, Brown Norway rats

(n = 36, split into 3 groups of 12) received seven daily doses (5 µL) of 1 mg/mL sunitinib

equivalent in HR97-SunitiGel (6.2 mg of HR97-sunitinib dissolved in 1 mL of 12% w/w

F127). The ONH crush procedure was then performed on separate groups of animals on

day 0, 7, and 14 after the last dose. Another group of rats (n = 12) received seven daily

eye drops (5 µL) of water as a sham control prior to undergoing the ONH crush procedure
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on day 0 (immediately after the last dose). The third group of rats (n = 12) received seven

daily eye drops (5 µL) of 1 mg/mL equivalent sunitinib in SunitiGel (1.34 mg sunitinib

malate in 1 mL of 12% w/w F127, equal to 1 mg/mL sunitinib equivalent). Rats received

general anesthesia prior to topical anesthesia. Proparacaine hydrochloride (0.5% w/v) was

applied topically to the right eye 1 min before the surgical process. The temporal conjunc-

tiva of the left eye was grasped with 0.12 mm toothed forceps and incised parallel to the

limbus with sharp iris scissors. The dissection was performed using two pairs of curved

blunt-tipped forceps, and the orbital fat and soft tissue were retracted to expose the orbital

portion of the optic nerve. The optic nerve was crushed at a position 1.5–2 mm posterior to

the globe using reverse-action forceps for 10 s. The orbital soft tissue was then repositioned

over the nerve and the conjunctiva was left to close by secondary intention [127]. After

the procedure, topical bacitracin-neomycin-polymyxin ophthalmic ointment was applied to

both eyes to prevent infection. Any animals that bled severely during the surgery were

sacrificed and excluded from the study. Seven days after the optic nerve crush, rats were

sacrificed for subsequent analyses.

3.5.10 Retinal ganglion cell staining and imaging

The process of harvesting retina tissues, staining, and imaging were performed as

previously described [127, 163]. Rats were sacrificed by cervical dislocation under general

anesthesia. The eyes were then harvested and fixed with 4% w/v paraformaldehyde for 2

h. The retinas were removed, incised for flat mounting, and post-fixed for 2 h. The retinas

were then washed with PBS containing 0.5% w/v Triton-100 for 30 min and incubated
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for 3 days at 4 ◦C in a solution containing rabbit anti-rat RBPMS antibody diluted 1:250

in PBS with 1% w/v Triton X-100 and 1% w/v BSA. The retinas were then washed for

three times with PBS containing 0.5% w/v Triton-100 and incubated overnight at 4 ◦C

in a solution containing Goat anti-Rabbit IgG H&L Secondary Antibody Alexa Fluor 555

(Thermo Fisher, Waltham, MA, USA) diluted 1:1000 in PBS with 1% w/v Triton X-100

and 1% w/v BSA. The retinas were washed again for three times and incubated overnight

in DAPI diluted 1:1000 in PBS. The resulting retinal wholemount was then mounted on a

slide using Fluoromount-G. The prepared retinas were imaged with a Zeiss 710 Confocal

Microscope. For each retinal wholemount, 16 images were taken from the region 2–3 mm

from the optic nerve per each retinal quadrants using a 40X objective. The DAPI images

were pseudo-colored in blue and the RBPMS images were pseudo-colored in red.

3.5.11 Retinal ganglion cell counting

For training the TensorFlow Object Detection model (TensorFlow Version 1.2), 173

images containing 4247 RGCs, and 62 images containing 1757 RGCs were manually la-

beled using the LabelImg function as the training and testing sets, respectively. Faster

R-CNN with Inception Resnet v2 and SSD-MobileNet were used as the TensorFlow Object

Detection models. The weighted sigmoid (sigmoid cross-entropy loss function) was used

for the classification loss, and the weighted smooth L1 (box regression in object detection)

was used for the localization loss. To avoid overfitting, the training process was terminated

when the total loss was <1 or when the total loss has reached a steady state. An inference

graph at each epoch was created with the script export_inference_graph.py provided in
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the object_detection directory. The CellProfiler, version 3.1.9, with CellProfiler Analyst,

version 2.2.1, was used in this study. The Metadata function was used to extract the DAPI

and RBPMS sub-layer information from confocal images and the names were assigned using

NamesAndTypes. The DAPI layers were first smoothed with the Gaussian filter function,

and the IdentidyPrimaryObjects function was used to identify the DAPI areas using global

and three-class Otsu threshold methods. The RBPMS sub-layers were smoothed with the

Guassian Filter and then again smoothed with the Median Filter because the RBPMS

staining with the RGCs had given uneven intensities and confused the program in the

subsequent steps. The IdentifySecondaryObjects function with Propagation strategy and

adaptive, three-class Otsu, and foreground methods were used to identify the RBPMS as

secondary objects based on the DAPI areas identified in the primary object session. The

object shape size, object intensity, and texture were measured for both DAPI and RBPMS

objects as the features for CellProfiler Analyst, version 2.2.1. An SQLite database was

generated after the CellProfiler had finished the feature extraction. In CellProfiler Ana-

lyst, RandomForestClassifier was used and RGCs in the unclassified window were dragged

to the positive area following the suggested protocols. >100 cells in each positive and

negative class were then manually assigned until the classification accuracy reached over

than 90% computed using the evaluation function. Finally, the output scores were used

to quantify the RGCs in each image. RGCs in another set of 200 images were manually

counted by three researchers masked to the sample identity and the means were calculated

for each image. In a rare instance that the cell count per image varied by >10%, the images

were recounted by each person until the variance was <10%. Quantification results of the

RGC images predicted by Faster R-CNN with Inception Resnet v2, SSD-MobileNet, and
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CellProfiler Analyst models were compared to the manual counting results using Pearson

correlation.

3.5.12 Pharmacokinetic studies

Brown Norway rats (n = 6) received once daily eye drops (5 µL) containing 1 mg/mL

sunitinib equivalent in HR97-SunitiGel (6.2 mg of HR97-sunitinib dissolved in 1 mL of 12%

w/w F127) or containing 1 mg/mL equivalent sunitinib in SunitiGel (1.34 mg sunitinib

malate in 1 mL of 12% w/w F127, which was equal to 1 mg/mL sunitinib equivalent) for

seven days. Fourteen days after the last dose, the iris, choroid, and retina were collected

and analyzed for sunitinib concentration using LC-MS/MS. Similarly, Dutch Belted rabbits

(n = 4) received once daily eye drops (50 µL) containing 1 mg/mL sunitinib equivalent

in HR97-SunitiGel or containing 1 mg/mL equivalent sunitinib in SunitiGel. Two hours

after the last dose, the iris, choroid, and retina were collected for analysis of sunitinib

concentration using LC-MS/MS.

3.5.13 Measurement of sunitinib in ocular tissues

Sunitinib concentrations in ocular tissues were measured by liquid chromatography-

tandem mass spectrometry (LC-MS/MS) as previously described [124]. All samples were

collected in pre-weighed tubes and stored at −80 ◦C until being processed for analysis.

Tissue samples were homogenized in 100–600 µL 1 × PBS using a Next Advance Bullet

Blender before extraction. Sunitinib was extracted from 15 to 50 µL of tissue homogenates

with 50 µL of acetonitrile containing 50/50/2.5 ng/mL of the internal standards (sunitinib-
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d10). The top layer was then transferred to an autosampler vial for LC-MS/MS analysis

after centrifugation. All ocular tissue samples were analyzed using a 1 × PBS standard

curve for sunitinib. Separation was achieved with Waters Cortecs C18 (2.1 × 50 mm,

2.7 µm). The column effluent was monitored using a Sciex triple quadrupol 4500 with

electrospray ionization operating in the positive mode. The Mobile phase A was water

containing 0.1% formic acid and the mobile phase B was acetonitrile containing 0.1% formic

acid. The gradient started with the mobile phase B held at 10% for 0.5 min and increased

to 100% within 0.5 min; 100% of mobile phase B was held for 1 min, and then the mobile

phase B returned back to 10% and was allowed to equilibrate for 1 min. The total run

time was 3 min with a flow rate of 0.3 mL/min. The spectrometer was programmed to

monitor the following MRM transition 399.1 → 283.2 for sunitinib and 409.1 → 283.2 for

the internal standard, sunitinib-d10. Calibration curve for sunitinib was computed using

the area ratio peak of the analysis to the internal standard by using a quadratic equation

with a x-2 weighting function over the range of 0.25–500, with dilutions up to 1:100 (v:v).

Core technicians performing sample and data analysis were masked to the treatment groups.

3.5.14 Statistical analyses

Statistical analyses of two groups were conducted using two-tailed Student’s t-test,

two-tailed Mann–Whitney test, or two-way analysis of variance (ANOVA). For comparison

of multiple groups, one-way ANOVA with Dunnett’s multiple comparison test was used.

Pearson correlation coefficients (r) and the corresponding p-values (two-tailed) were cal-

culated to assess the relationships between model predictions and the mean values of the
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manual counting.
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Part III

Malaria Vaccine Antigen Identification
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Chapter 4: Positive-Unlabeled Learning Identifies Vaccine Candidate Anti-

gens in the Malaria Parasite Plasmodium falciparum

4.1 Abstract

Malaria vaccine development is hampered by extensive antigenic variation and com-

plex life stages of Plasmodium species. Vaccine development has focused on a small number

of antigens identified prior to availability of the P. falciparum genome. In this study, we

implement a machine learning-based reverse vaccinology approach to predict potential new

malaria vaccine candidate antigens. We assemble and analyze P. falciparum proteomic,

structural, functional, immunological, genomic, and transcriptomic data, and use positive-

unlabeled learning to predict potential antigens based on the properties of known antigens

and remaining proteins. We prioritize candidate antigens based on model performance on

reference antigens with different genetic diversity and quantify the protein properties that

contribute the most to identifying top candidates. Candidate antigens are characterized by

gene essentiality, gene ontology, and gene expression in different life stages to inform future

vaccine development. This approach provides a framework for identifying and prioritizing

candidate vaccine antigens for a broad range of pathogens.
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4.2 Introduction

Artemisinin-based combination therapies and other tools have contributed to substan-

tial reductions in the malaria burden in many endemic areas over the last decade [164]. How-

ever, progress toward malaria elimination has stalled as malaria incidence has plateaued

and gains have been threatened by the emergence of resistance to interventions in the par-

asite and vector [164–167]. With the possible future exception of dracunculiasis caused

by Guinea worm, no infectious disease has been completely eradicated without the aid

of an efficacious vaccine [168, 169]. Thus, malaria vaccines are a critical tool for malaria

elimination.

Plasmodium parasites are transmitted to humans when infective mosquitoes take a

blood meal and inject sporozoites, which develop and multiply in the liver. Vaccines di-

rected against this pre-erythrocytic stage is meant to block infection. After emerging from

the liver, Plasmodium merozoites invade and replicate inside red blood cells. This erythro-

cytic stage of the life cycle causes malaria disease and death, which blood-stage vaccines are

intended to limit. Transmission-blocking vaccines would inhibit parasite sexual recombi-

nation and development in the mosquito, preventing onward transmission [170]. Design of

a broadly protective malaria vaccine has been hampered by several factors, including mul-

tiple parasite life stages that express different antigens, extensive genetic diversity within

individual antigens targeted by vaccines, partial natural immunity that is short-lived and

non-sterilizing, and incomplete knowledge of immune correlates of protection [171]. To

date, very few malaria vaccine candidates have been evaluated in clinical trials, with most

demonstrating limited efficacy [172], including the first malaria vaccine approved for use
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by the World Health Organization, RTS,S, which displayed only 36% efficacy in a Phase 3

trial when given to 5–17 months old as a primary series followed by a booster dose [173].

Another promising vaccine, R21, recently showed an efficacy of 71% in phase 1/2b [174].

Malaria parasites are haploid in humans and briefly diploid in mosquitoes. Extensive

genetic variation is generated through mutation during mitotic reproduction in humans and

by sexual recombination in the mosquito. The first P. falciparum genome was published

in 2002 [175], but nearly 20 years later most vaccine development efforts have focused on

a small number of highly diverse vaccine candidates identified prior to the availability of

the genome using traditional vaccinology approaches that identify antibody targets in im-

mune sera. These highly immunogenic candidates have typically evolved extensive genetic

diversity in response to immune pressure. Thus, many vaccines have displayed some de-

gree of allele-specific efficacy (including RTS,S) [176–179], demonstrating greater efficacy

against parasites with target alleles matching those in the vaccine formulation (i.e., vaccine

allele-specific efficacy) [171].

Reverse vaccinology utilizes bioinformatics approaches to identify pathogen antigens

or epitopes that could be used as vaccine candidates [180–182]. It was first proposed by

Rino Rappuoli who screened the Meningococcus B proteome to identify five antigens with

bactericidal activities, which were subsequently included in the licensed four-component

MenB vaccine (4CMenB, Bexsero®) [183–186]. Reverse vaccinology has since been used to

identify vaccine antigens for other bacterial and viral pathogens [187–192]. The wealth of

systems data available for P. falciparum lends itself to the use of reverse vaccinology to

identify new malaria vaccine antigens, which may allow identification of less immunodom-

inant but more conserved antigens that have been missed using traditional vaccinology
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approaches based strictly on immunogenicity. There has been limited use of reverse vac-

cinology to identify malaria candidate antigens. Singh et al. [193] applied the concept

to identify candidate antigens with signal peptide and glycosylphosphatidylinositol (GPI)

anchor motifs while Pritam et al. [194] also used signal peptide and GPI-anchor predic-

tion tools along with T-cell epitope prediction to identify P. falciparum epitopes. Both

studies focused on a limited number of protein or epitope properties. In contrast, machine

learning in reverse vaccinology does not require a priori assumptions about the importance

of specific criteria, and instead, “learns” protein properties most associated with vaccine

potential based on known antigens.

Positive-unlabeled (PU) learning is applicable to many biological problems where the

labeling process is often expensive or time-consuming, and only a small fraction of entities

might be labeled [192, 195]. Learning from the labeled positives, PU learning identifies

potential positives among the unlabeled entities based on the properties of the data [196,

197]. This approach has been used to identify genes associated with human disease based

on various data types, including human protein interaction data, gene expression data,

gene ontology, and phenotype-gene association data [198], yet to our knowledge, it has

not been applied to identify candidate antigens. PU learning is particularly attractive for

P. falciparum, as approximately 40% of genes in the genome encode proteins of unknown

function [199, 200].

Here, we modify canonical positive-unlabeled random forest (PURF) [201] to distin-

guish proteins with vaccine potential (i.e., antigens) from non-antigens, based on properties

of known P. falciparum antigens, and rank the candidates with probability scores. Vari-

able importance is assessed to understand the protein properties contributing most to
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identifying candidate antigens. The candidates are linked to other data types (e.g., gene

essentiality [202], stage-specific single-cell transcriptomic data [203–205], and proximity to

the known malaria vaccine antigens), to allow further characterization and prioritization

in subsequent vaccine development.

4.3 Results

4.3.1 Identification of potential P. falciparum candidate antigens

In this study, 52 known antigens were selected from the intersection of the antigen

sets obtained from the literature and from epitope information from the Immune Epi-

tope Database (IEDB) [206], based on their ability to elicit an immune response [192].

Among the known antigens, four antigens (CSP, MSP5, P230, and RH5) representing

vaccine candidates from different parasite life stages and with varying levels of genetic

diversity [207–210], were selected to serve as reference points for candidate antigen priori-

tization. A relational database was created to organize data assembled and generated for

the P. falciparum proteins (Figs. 4.1, C.1). The structural, proteomic, and immunological

data were generated using various bioinformatic programs (Section 4.5). We also retrieved

genomic, transcriptomic, and functional information from public databases such as Plas-

moDB [199]. Additional variables were created by combining variables from different data

types. The 272 variables comprise 28 structural variables, 121 proteomic variables, 116

immunological variables, and 7 genomic variables.
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Figure 4.1 Database schema of P. falciparum vaccine target identification. The
database is structured as a collection of data tables here represented as nodes with colors in-
dicating different groups of tables. Part of the tables in the database are listed as examples. The
lines of the hierarchical edge bundling plot show the hierarchical relationships between tables. The
orders in the hierarchical structure are origin (root node), group of tables, and data table. Tables
with the same type of relationship to the foreign table are collapsed to one node. Data tables
generated from computational analyses are connected to sequence (purple) and basic information
(orange) tables with gene accession identifiers.
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4.3.2 Training positive-unlabeled random forest models

We employed tree-based PU learning (PURF), an ensemble of individual tree mod-

els. PURF incorporates a modified impurity measure (see Section 4.5) that estimates the

probabilities of the positives and negatives based on observations in the tree node [201].

To evaluate the ensemble, we simulated fully labeled data, and estimated the receiver

operating characteristic (ROC) curve, which was calculated using the probability scores

(out-of-bag scores; see Section 4.5). The estimated ROC curve was then compared with

ROC curves calculated using the probability scores against the true labels and using the

PU labels (Fig. C.2). The estimated ROC curves were like those of true labels (Mann–

Whitney, q = 0.06, n = 5), while the ROC curves of PU labels were different from the

others (q = 0.01 for both comparisons). This result demonstrates that even without the

true label information, the ROC curve may be recovered from the score distribution.

To select the positive level (hyperparameter for prior probability of positive samples)

of PURF, we trained with positive levels from 0.1 to 0.9. The positive level of 0.5 shows

the highest area under the estimated ROC curve (AUROC = 0.98) (Fig. C.3). Proteins

were ranked based on probability scores, which is defined as the proportion of trees in

the ensemble predicting the protein to be antigenic. The overall percentile ranks (PRs) of

the known antigens were highest for the ensemble with 0.1 positive level (area under the

ranking curve; AUC = 0.83), whereas all known antigens were predicted correctly (explicit

positive recall; EPR = 1) by the ensembles with 0.8 and 0.9 positive levels (Fig. C.4). The

AUC and EPR of the ensemble with 0.5 positive level were 0.81 and 0.83, respectively.

To improve the performance we utilized a method like the synthetic minority over-
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sampling technique (SMOTE) [211] to increase representation of known antigens. The

weighting made known antigens equally representative by duplicating those that are more

distant from others in the variable space, which increased classification performance. The

estimated ROC curve showed an increase in classification separability (AUROC = 0.99,

positivelevel = 0.5, Fig. C.5). The known antigens obtained a higher percentile rank

(Fig. C.6), and the EPR of the ensemble with 0.5 positive level increased to 0.92.

4.3.3 Classification tree filtering using reference antigens

To utilize the random forest structure to prioritize candidate antigens, we identified

tree models that correctly predicted all reference antigens that were in the out-of-bag set

of the tree (those proteins not used to build the tree). Trees that did not have reference

antigens in the out-of-bag set or incorrectly predicted any of the out-of-bag reference posi-

tives were removed. PURF with tree filtering had an estimated AUROC of 0.99 (Fig. 4.2a).

The evaluation of the 52 known antigens showed that 51 had percentile rank >50 and the

EPR was 0.94 (Fig. 4.2b). For further characterization, we selected the top 200 candidate

antigens with a probability score >0.94 because half of the known antigens had scores above

this threshold.

To assess robustness, we performed an iterative validation procedure by sequentially

removing the positive label from one of the 48 known antigens (excluding the four reference

antigens) from each iteration as an adversarial control [212], conducted variable space

weighting, and retrained our models. The results show small mean differences in scores

of the remaining known antigens before and after the label removal (Fig. 4.2c), and there
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was no significant difference between filtered and unfiltered ensembles (Mann–Whitney,

p = 0.32, Fig. C.7). The top 200 candidate lists from the 48 ensembles were generated, and

the cumulative numbers of candidates that agreed on 48, 47, 46 ensembles, and so on, are

similar between the filtered and unfiltered ensembles (Fig. 4.2d), demonstrating that the

tree filtering procedure did not affect the overall PURF structure in predicting candidate

antigens.

To understand protein variables contributing to the identification of the known anti-

gens, we investigated the mean decrease in prediction accuracy across all trees in the filtered

ensemble with variable permutations. The top ten most important variables include one

structural, one genomic and eight proteomic variables (Fig. 4.3a). Comparisons of the

variable values between the known antigens and 52 random proteins predicted to be non-

antigens by tree-filtered PURF reveal that the known antigens contain fewer amino acids

with high polarizability (K, M, H, F, R, Y, W), comprise fewer amino acids with high van

der Waals volume (M, H, K, F, R, Y, W), and have fewer hydrophobic amino acids (C, L,

V, I, M, F, W) (Fig. 4.3b). Moreover, the known antigens have fewer positively charged

amino acids (K, R) and a lower isoelectric point value (Fig. 4.3b). Known antigens also

have a higher secretory signal peptide probability, a higher number of non-synonymous

SNPs, and have higher flexibility and hydrophilicity for predicted epitopes (Fig. 4.3b). The

importance of variables grouped by data categories showed that the proteomic variables

are most important in identifying known antigens (Fig. 4.3c).
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Figure 4.2 Model evaluation and validation of positive-unlabeled random forest mod-
els. a Score distributions of unlabeled proteins predicted by the tree-filtered model. The putative
positive (red) and negative (blue) distribution groups were calculated by fitting a two-component
Gaussian mixture model. A receiver operating characteristic curve (ROC) was calculated based
on the putative distributions, and the area under the receiver operating characteristic curve (AU-
ROC) was 0.99. b Evaluation of known antigen scores predicted by the tree-filtered model. Points
represent known antigens. The x-axis shows the scaled ranks of the 52 known antigens. The y-axis
notes percentile ranks (PR) of known antigens in the set containing all P. falciparum proteins.
The dashed line indicates the 50th percentile rank. Gradient colors show probability scores. The
area under the ranking curve was 0.90. c Distribution of mean differences in scores after known
antigen label removal for the final tree-filtered ensemble. Dots represent the 48 validation itera-
tions. The box plot shows median with first and third quartiles. The lower and upper whiskers
indicate 1.5 × interquartile range from the first and third quantiles, respectively. The grey dashed
line conveys a zero-mean difference in scores. d Plot of overlapping antigens across the top 200
candidate sets generated from the validation models. The x-axis shows the number of validation
models in reverse order, and the y-axis indicates the number of candidate antigens in agreement
with the corresponding number of models. Line colors show data from non-tree-filtered (yellow)
and tree-filtered (red) validation models, respectively.
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Figure 4.3 Positive-unlabeled random forest model interpretation based on known
antigens. a The left panel displays permutation-based variable importance analysis of the final
tree-filtered model. The x-axis shows the mean decrease in accuracy (scaled by the standard
error) of the known antigen set (n = 52) after permuting the variables for each tree in the model.
The y-axis lists the ten most important variables in predicting the known antigens. The property
groups of the variables are noted by colors. The right panel shows summary of variable values
of the known antigens (red) and randomly selected proteins (n = 52; blue) that are predicted
as non-antigens by the final tree-filtered model. The ten most important variables obtained
from the premutation-based variable importance analysis are shown. Points represent proteins.
Boxplots show median with first and third quartiles, and the whiskers indicate the 1.5 interquartile
range extended from the first and third quartiles. Numbers on the right show adjusted p-values
calculated using two-sided Mann–Whitney tests. Variable values were normalized based on the
entire data set. b Permutation-based group variable importance analysis. Variable importance
was calculated on the known antigens, and the decrease in accuracy after variable permutation was
recorded. Variables in the same property groups were permutated together. The mean decrease
in accuracy was standardized using the standard error computed across all trees in the model.
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4.3.4 Proximity of top-ranked candidates to reference antigens

To understand how tree filtering assisted in prioritizing antigen candidates based on

the reference antigens, we examined the proximity space before and after tree filtering.

Proximity values are the proportion of times a pair of proteins occur in the same terminal

node of a tree model and represent the similarity with respect to variables used in the

model. The proximity was converted to a Euclidean distance (smaller values indicate more

closeness) and visualized using multidimensional scaling. The top candidate antigens were

clustered into three groups (Fig. 4.4). The probability scores of candidate antigens in

groups 1 and 2 increased after tree filtering (Fig. C.8), indicating that some candidates in

groups 1 and 2 have been prioritized into the top candidate list after tree filtering.

To study the relationships between the candidate and reference antigens, we compared

the Euclidean distances of the candidate antigens in each group to each of the four reference

antigens. The distances significantly changed (FDR <0.05) in all three groups after tree

filtering. Comparing the three groups, after tree filtering, group 3 had the farthest median

distance to the reference antigens, group 1 had the closest median distance to CSP, MSP5,

and P230, group 2 is closest to RH5 (red points in Fig. C.9). For RH5, MSP5, and P230,

both groups 1 and 2 moved closer to the three reference antigens (blue and purple points

in Fig. C.9) and group 3 moved further away after tree filtering (dark orange points in

Fig. C.9), suggesting that reference antigens may have less effect on prioritizing group

3 antigen candidates. Overall, RH5, MSP5, and P230 may have positive influences on

the prioritization of group 1 and group 2 antigen candidates. Interestingly, the median

distances of group 2 antigen candidates are less than 0.5 to all reference antigens (red
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Figure 4.4 Clustering of top 200 candidate antigens based on proximity measured
from tree-based model. First two dimensions of UMAP are shown. Top 200 candidate antigens
from the final tree-filtered model were grouped based on k-means clustering. Points represent top
200 candidate antigens in three groups, 48 known antigens (light cyan), and four reference antigens
(yellow; protein names noted by text).

points in Fig. C.9), suggesting that over half of the trees in PURF agreed on the protein

similarities between group 2 and all four reference antigens.

4.3.5 Variable importance of candidate antigen groups

Permutation-based variable importance analyses were conducted for each of the three

candidate antigen groups. The shared importance variables in identifying the candidates

as antigens for the three groups includes higher number of non-synonymous SNPs, higher

flexibility and hydrophilicity for predicted epitopes, lower probability of mitochondrial sub-
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cellular localization, and fewer number of hydrophobic amino acids (Fig. C.10). The shared

important properties of candidate antigens in the three groups were similar to the proper-

ties of known antigens. Among the three groups, group 2 had the most similar important

variables as known antigens. The secretory signal peptide probability, which was ranked

nineth in the important variable list for known antigens, was ranked 83rd, 226th, and 83rd

in the results of groups 1, 2, and 3, respectively, suggesting that secretory signal peptide

may be important in classifying the protein as antigens (probability score ≥0.5), but not

as critical for higher probability score (≥0.9).

In terms of top-ranked variables, the number of non-synonymous SNPs, epitope flexi-

bility, and epitope hydrophilicity were ranked among the top three for groups 1 and 2, and

among the top four for group 3 (Tables C.1–C.3). The median number of non-synonymous

SNPs is lower and there was a smaller variance in the distribution for group 2 compared to

groups 1 and 3 (Fig. C.10). The predicted number of B-cell epitopes in outer membrane

regions was ranked as the most important variable for group 3, whereas it was the least

important among the 272 variables for groups 1 and 2 (Table C.3).

4.3.6 Characteristics of identified potential vaccine antigen targets

We applied gene ontology (GO) enrichment analysis to assess annotation-associated

properties of candidate antigen groups compared to the background of the P. falciparum

proteome. Group 1 was significantly enriched for genes encoding proteins involved in cell-

cell adhesion, cytoadherence to the microvasculature, erythrocyte aggregation, and anti-

genic variation. Similar enriched GO terms were observed for group 3 (Table 4.1). Group
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2 candidate antigens were enriched in parasite nucleus and cytoplasm and not associated

with antigenic variation (Table 4.1), suggesting these potential antigens may be less im-

munogenic or less exposed to the host immune response. Further examination of the gene

products of group 1 revealed that 85% of the candidates are erythrocyte membrane pro-

teins (PfEMP1), whereas 36% and 26% of candidates in groups 2 and 3, respectively, are

conserved proteins with unknown functions.

We filtered the candidate antigen groups by gene essentiality, where genes with mu-

tagenesis index score (MIS) <0.5 were retained [202]. We examined the expression of the

genes encoding the remaining candidate antigens in different P. falciparum life stages based

on single-cell transcriptomic data from the Malaria Cell Atlas [203–205]. Of the group 1

candidates remaining after essentiality filtering, one was expressed mainly in the blood

stage, and the other was expressed in all life stages, with higher expression levels in a

larger portion of cell populations in the blood and gametocyte stages (Fig. C.11). For

groups 2 and 3, most candidate antigen genes were expressed primarily in the blood, ga-

metocyte, and ookinete stages, and a smaller number of groups 2 and 3 candidates were

expressed in all life stages (Fig. C.11).

4.4 Discussion

Over the past decades various malaria vaccine candidates have been developed and

proceeded to clinical trials. Nevertheless, a highly efficacious and long-lasting malaria

vaccine against P. falciparum is still an unmet need. We are now in the second wave of

malaria vaccine development [213], with the goal of selecting vaccine antigens with potential

104



to elicit an enhanced immune memory response and a protective efficacy of at least 75%

against clinical malaria [214]. With the advancement of genome sequencing of Plasmodium

and bioinformatics tools, reverse vaccinology has become a viable vaccine development

approach for this complex organism.

Reverse vaccinology has been applied using sequential filtration of protein properties

or with machine learning, both of which have identified potential new vaccine antigens for

Plasmodium species, but with some limitations [194, 215]. Approaches based on sequen-

tial filtration lack standardized filtering criteria, with thresholds often selected based on

empirical evidence, and could be difficult to generalize when there are many protein vari-

ables [192, 216]. In P. falciparum, there are only a small number of known antigens that

can be labeled as positives, and non-antigens are difficult to identify from the literature or

based on reference genomes with incomplete annotation. One study using machine learn-

ing algorithms to predict potential vaccine antigens in eukaryotic pathogens only examined

seven protein variables and did not consider genome properties such as sequence complexity

and genetic diversity [215], both of which are relevant to malaria vaccine development and

have impacted the efficacy of first-generation malaria vaccines [176–179]. Additionally, this

study examined only a relatively small set of three Plasmodium proteomes (73 antigens and

51 non-antigens, from P. falciparum, P. yoelii yoelii, and P. berghei). In contrast, we per-

formed comprehensive analyses on 5,393 P. falciparum proteins and computed 272 protein

variables on each. To ensure a high-quality PU data set of known P. falciparum antigens,

we took the intersection of antigen sets curated from the literature and IEDB [206].

PU learning takes advantage of unlabeled data and improves modeling when only a

small portion of entities are labeled as positive [196, 217]. In this study, we chose random
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forest [218] as the basis for our PU learning because of its high predictive accuracy, high

interpretability, and insensitivity to outliers and predictive variable scales [219]. Addi-

tionally, PURF is amenable to the modifications we developed here. Permutation-based

variable importance analysis is naturally derived from the random forest architecture and

imparts a quantitative measure of the variable importance [218]. Moreover, many studies

involving machine learning analyses focus primarily on the model accuracy and develop

complex models that are hard to interpret. However, it is critical to understand the re-

lationships learned by the model and whether they are biologically meaningful [212, 220].

Here, the interpretation of PURF provides helpful insights on how the models have learned

in distinguishing known antigens from non-antigens, and how the previously unknown can-

didate antigens were identified. Although PU learning enabled us to fully harness the entire

P. falciparum proteome, it is a data-driven approach that could be affected by the known

antigens provided. Thus, in this study, efforts were made to ensure the quality of the

known antigens. Further inclusion of more high-quality known antigens may improve the

model performance.

To develop malaria vaccines with higher efficacy, it is critical to consider genetic vari-

ation that is immunologically relevant [171]. Four reference antigens that are actively in

development as malaria vaccines were chosen to help understand our models. Circumsporo-

zoite protein (CSP) is a surface protein expressed during the pre-erythrocytic stage and is

the active component of the RTS,S vaccine [221]. Reticulocyte binding homolog 5 (RH5)

is expressed in the blood stage, functions as an invasion ligand, and is currently under

malaria vaccine development [222, 223]. Merozoite surface protein 5 (MSP5) is associated

with natural antibody responses [224]. P230, in the 6-cysteine protein family, is expressed
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and located on the surface of gametocytes [225]. These reference antigens display a range

of genetic diversity, as measured by percentile rank of SNPs per Kb coding sequence over

P. falciparum proteome (P230 0.39, MSP5 0.43, RH5 0.52, CSP 0.94).

The approach described in this study identified previously unknown vaccine candidate

antigens for P. falciparum vaccine development. The research scheme provides a flexible

framework, in which the candidate antigens can also be prioritized using a different set

of reference antigens selected using other criteria, while not affecting the overall PURF

structure. Candidate antigens identified in this study have been filtered based on gene

essentiality, where mutations in these genes could affect parasite viability, and thus may

help reduce parasite escape from vaccine-induced immune responses [202]. Most candidate

antigens were expressed predominantly in a single life stage, which is consistent with the ob-

servations of previous studies [226]. For instance, group 3 antigens were mostly expressed in

blood and sexual stages, which were associated with higher number of B-cell epitopes in the

outer membrane regions. However, some candidates were expressed in multiple life stages,

which may make them attractive vaccine antigens because they would target multiple life

stages. An interactive summary report of the identified candidate antigens identified is

available in an online research notebook (https://doi.org/10.13016/me1l-1ahr). The

information about the closest reference antigens to the candidates and single-cell gene ex-

pression is also included. For future studies, further filtering criteria, such as isoelectric

point, molecular weight, and folding propensity, may be applied to select candidate anti-

gens for heterologous protein expression in other species systems to perform functional

assays [227, 228].

Our approach exploits PU learning in reverse vaccinology to identify potential P. fal-
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ciparum vaccine candidate antigens for future vaccine development, which does not assume

filtering criteria of protein variables, is driven by the proteome, and leverages a small set

of known antigens. The alteration of the model ensemble based on the reference antigens

aids in candidate antigen prioritization. In response to the shift in species constitution in

malaria endemic areas, the developed framework can be expanded to P. vivax and other

Plasmodium species that cause human malaria [229]. The methodology can be further tai-

lored and applied to other disease pathogens. More broadly, beyond vaccine development,

the study may also inspire other scientific research areas, if there is only a relatively small

amount of evidence collected to guide the prioritization of the study entities.

4.5 Methods

4.5.1 Known antigen protein collection

Known antigens were selected based on literature and epitope information. Covi-

dence (www.covidence.org), a web-based application tool designed for systematic review

and streamline the screening of literature search, was used to select, and extract litera-

ture covering malaria vaccine research. Our goal was to look for all the malaria vaccine

candidates that have been already reported in the literature. The search terms include

the following: “malaria vaccine”, “malaria vaccine candidate”, “malaria vaccine antigen”,

“malaria vaccine protein”. In brief, the search covered papers and documents having both

malaria and vaccine in any of its sections. The search generated a set of articles that dis-

cuss malaria vaccine candidates, rather than a list of each of the candidates. Overall, our

search produced 7,415 articles in total. We then manually went through all these papers
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to identify proteins used as malaria vaccine candidates. Non-redundant candidates were

selected based on gene names, GenBank ID, or aliases.

The known antigens selected based on the epitope information were extracted from

the PlasmoDB [199] immunology section. Epitopes from the Immune Epitope Database

(IEDB) [206] are mapped to the PlasmoDB proteins with exact string matching; at the same

time, the corresponding GenBank proteins from IEDB were aligned to PlasmoDB proteins

using BLAST [230]. The similarity threshold of a best hit is percent identity ≥97%. We

selected proteins from PlasmoDB as known antigens if the protein has a similarity score

larger than or equal to the similarity threshold, or having all listed epitopes aligned exactly

to the PlasmoDB protein sequence. The set based on the literature contained 177 known

antigens, and the set based on the epitope information had 373 known antigens. The final

known antigen list was an intersection of the two sets and included 52 antigen proteins.

4.5.2 Collection of Plasmodium data and bioinformatic analyses

P. falciparum 3D7 genome information and protein sequences were collected from

PlasmoDB [199] release 43 (2019-04-25). An in-house database was constructed using

MariaDB version 10.3.22 (https://mariadb.com/). The data tables are connected via

table identifiers or gene accessions. Part of the Chado schema from the Generic Model

Organism Database [231] was integrated into the database design to eliminate redundancies.

The database contains eight categories of tables, including basic information, sequence

information, genomic, transcriptomic, functional, structural, proteomic, and immunological

tables.
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In brief, the reference genome, coding sequences (CDS), and protein sequences were

directly downloaded from PlasmoDB [199]. Proteins with stop codons within the sequence

or derived from pseudo genes were removed. Protein sequences having “X” symbols were

also removed. Selenocysteines in selenoproteins were replaced with cysteines for down-

stream bioinformatic analyses. The preprocessing resulted in 5,393 P. falciparum proteins.

General information including genome, coding sequence locations, protein sequences, and

sequence ontology terms were stored in the basic information and sequence information

database tables.

For genomic data tables, single nucleotide polymorphisms (SNPs) discovered from

next-generation sequencing (NGS) were directly downloaded from PlasmoDB [199] under

the genetic variation section (365 genomes). The measures of SNPs include total number of

SNPs, number of non-synonymous SNPs, number of synonymous SNPs, number of nonsense

SNPs, number of non-coding SNPs, ratio of non-synonymous to synonymous SNPs, and

number of SNPs per Kb coding sequence. Gene essentiality measured from saturation-

level mutagenesis was obtained from the literature [202]. Transcriptomic data included

DNA microarray [232] and bulk RNA-seq [233–236] data at various P. falciparum life

stages retrieved via PlasmoDB, and single-cell RNA-seq data from the Malaria Cell Atlas

(MCA) [203–205]. Functional data including gene ontology terms were downloaded directly

from PlasmoDB [199] as a GAF file.

For structural data, transmembrane helices were predicted using the TMHMM version

2.0 web server (http://www.cbs.dtu.dk/services/TMHMM/) [237,238]. Sequence complex-

ity was analyzed using the SEG [239]. Beta-turns, surface accessibility, and flexibility were

analyzed using IEDB Antibody Epitope Prediction version 3.0 [240–242]. By combining
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the results from TMHMM and SEG, new protein variables of sequence complexity in the

outer-membrane (non-cytoplasmic), transmembrane, and inner-membrane (cytoplasmic)

regions were generated.

For proteomic data, subcellular localizations were predicted using the CELLO version

2.5 web server (http://cello.life.nctu.edu.tw) [243]. Malarial adhesins/adhesin-like

proteins were predicted using the MAAP web server (http://maap.igib.res.in/index.

php) [244]. Physicochemical properties were analyzed using the R packages Peptides ver-

sion 2.4.1 [245] and protr version 1.6.2 [246], and IEDB Antibody Epitope Prediction

version 3.0 [247]. Glycosylphosphatidylinositol (GPI)-anchored proteins were predicted us-

ing the PredGPI web server (http://gpcr.biocomp.unibo.it/predgpi/pred.htm) [248].

Protein signal cleavage prediction was analyzed using the SignalP version 5.0 web server

(http://www.cbs.dtu.dk/services/SignalP/index.php) [249]. Protein solubility infor-

mation was obtained using the protein-sol abpred [250]. N- and O-linked glycosylation sites

were predicted using GlycoEP [251]. The results of glycosylation sites were combined with

the transmembrane predictions to generate additional variables of glycosylation sites in

the outer-membrane, transmembrane, and inner-membrane regions. Similarity to human

proteins was analyzed using BLASTP version 2.8.1+ [252].

For immunological data, T cell epitopes were predicted using the PREDIVAC web

server (http://predivac.biosci.uq.edu.au/cgi-bin/population.py) [253], which pre-

dicted epitopes specifically for sets of HLA class II allelic variants from ten population

regions. B cell epitopes were analyzed using BepiPred version 2.0, BepiPred version 1.0,

and ABCpred [254–256]. Additional variables of B cell epitopes in the outer-membrane,

transmembrane, and inner-membrane regions were computed using the transmembrane in-
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formation from TMHMM. Cytotoxic T cell epitopes were analyzed using CTLPred [257].

Chemokine inducer epitopes were analyzed using IL-10Pred [258]. Transporter associated

with antigen processing (TAP)-binding peptides were predicted using TAPPred [259]. MHC

class I and class II epitopes were predicted using IEDB MHC-I Binding Predictions version

2.22.3 [260] and IEDB MHC-II Binding Predictions version 2.22.3 [261], respectively. Epi-

tope antigenicity was analyzed using IEDB Antibody Epitope Prediction version 3.0 [262],

and epitope immunogenicity was predicted using IEDB Class I Immunogenicity version

1.1 [263]. In general, the epitope information was summarized for each protein with the

total number of epitopes passed the default threshold, and the maximum, mean, and min-

imum scores of the epitopes.

4.5.3 Data set assembly

The data set contains the predictor variables, and the response variable labels. The

variables were assembled by retrieval from the database. Antigen labeling information was

added as the response variable, where proteins selected as known antigens were labeled as

positive and the other proteins were unlabeled. The number of proteins was 5,393, and

the number of known antigens as labeled positives was 52. In total, 272 predictor variables

were retrieved from the database. All predictor variables are of numeric type, and missing

values in the variables were imputed by replacement with variable medians.
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4.5.4 Positive-unlabeled simulation

The simulated data were generated using the function make_classification from the

Python scikit-learn package [264]. The number of proteins was 5,000 and the number of

predictor variables was 300, comprising 250 informative variables, 40 redundant variables,

and 10 repeated variables. The response variable contained two classes (positive and neg-

ative) and was treated as true labels. Because the P. falciparum data set had 52 labeled

positives (known antigens) out of 5,393 proteins, the data set was 99% unlabeled. To con-

vert true labels to positive-unlabeled (PU) labels, a regular random forest classifier with

1,000 trees was trained to obtain probability (out-of-bag) scores for all proteins. We then

randomly selected 50 proteins that were predicted to be positive by the regular random

forest. We retained the positive labels of these 50 proteins and made the remaining 4,950

proteins unlabeled.

4.5.5 Positive-unlabeled random forest algorithm implementation

The positive-unlabeled random forest (PURF) framework is based on a modified

splitting criterion called positive-unlabeled Gini index (PUGini) [201], which is derived

from the Gini criterion (Gini = 1 − ∑
j p2

j , where pj is the probability of being classi-

fied a class j) [265]. The new splitting criterion estimated probabilities of positive and

negative proteins according to the numbers of labeled positives and unlabeled proteins in

the tree node. The probabilities of positive (p1) and negative (p0) proteins were respec-

tively estimated by the following equations [201,266], p1 = min(|POSnode| × PosLevel ×

|UNL|, 1)|POS||UNLnode|, and p0 = 1 − p1, where |POSnode| and |UNLnode| are, re-
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spectively, the numbers of labeled positives and unlabeled proteins in the node, and |POS|

and |UNL| are, respectively, the numbers of labeled positives and unlabeled proteins in the

data. Because PURF is based on random forest [218], it inherits the properties of robust-

ness to outliers and variable errors, insensitivity to monotonic transformation of variables,

and high predictive power. In this study, we implemented the PURF algorithm by extend-

ing the ensemble and tree modules in the Python scikit-learn package [264] and developed

a lightweight Python package. The framework proposed by Li and Hua [201] was slightly

modified where the positive level (PosLevel) has become a hyperparameter that can be

explicitly tuned by the user. We also added class functions that take tree weights as an

argument to calculate probability scores with the tree filtering procedure. For the initial

modeling, positive levels were set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The forest

size was 100,000 trees.

4.5.6 Positive-unlabeled random forest evaluation

Because in a PU learning problem we do not know the true state for the unlabeled

proteins, we cannot calculate the traditional evaluation metrics such as those involving true

negative and false positive rates. Further, the metrics based on PU labels could be affected

by the proportion of labeled positives [267]. Thus, in this study we used the following two

criteria, which utilize the probability score distribution from PURF and the percentile rank

of labeled positives, respectively, to examine the model performance.

The first criterion involves estimating the putative true and false positive rates from

the probability score distribution to calculate the receiver operating characteristic (ROC)
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curve. As the probability score distribution of unlabeled proteins is bimodal, the dis-

tribution can be described using a two-component mixture with the formula: h(x) =

πh1(x) + (1 − π)h0(x), where π ∈ (0, 1) and x ∈ X, X being the set of all possible

proteins, h1 is the score distribution of putative positive proteins, and h0 is the score distri-

bution of putative negative proteins. In this study, the two-component Gaussian mixture

was computed using the R package mixR, version 0.2.0 [268], and the area under the re-

ceiver operating characteristic curve (AUROC) was calculated using the R package pracma,

version 2.3.8 [269].

The second criterion calculates the percentile rank of labeled positives (known anti-

gens) among all protein proteins based on the probability scores. The criterion also reports

the proportion of labeled positives that are correctly predicted (explicit positive recall;

EPR) [217, 270]. The area under the percentile rank curve was computed using the R

package pracma, version 2.3.8 [269].

4.5.7 Variable space weighting

Because only ∼1% of the data were labeled as positive, the scarcity of the labeled pos-

itive may not well represent the positive (antigen) population. To make all known antigens

equally representative for learning the antigen properties, a variable space weighting proce-

dure was performed before training. A vector of variable medians was generated according

to the variable set of the known antigens. The vector represents the center point [271],

which is a generalized geometric median in higher-dimensional data, of the known antigens

in the variable space. The Euclidean distance between each known antigen and the center
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point was then calculated. The distances were scaled to rounded integer values from 1–10.

A new data set was generated by duplicating the known antigens with the transformed

distances. The number of labeled positives after variable space weighting was 122.

4.5.8 Ensemble constituent filtering

The tree filtering was conducted using four selected reference antigens (CSP, MSP5,

P230, RH5) to prioritize top-scored unlabeled proteins. To select trees that correctly

predicted the reference antigens in the out-of-bag set, trees having no references, or which

incorrectly predicted any of the out-of-bag antigens were removed, resulting in 74,089 trees

filtered from the original 100,000 trees. The probability scores were recalculated using

the function _set_oob_score_with_weights, where the removed trees were assigned with a

weight of zero.

4.5.9 Positive-unlabeled random forest validation

Known antigens, excluding the four reference antigens, were converted to unlabeled

proteins iteratively. For each of the 48 iterations, a variable-space-weighted data set was

generated, and an ensemble with a positive level of 0.5 determined through hyperparameter

tuning and 100,000 trees was trained. The model was subsequently processed using the

ensemble constituent filtering procedure. The probability scores of the remaining known

antigen predicted by both unfiltered and filtered models were recorded. The differences

in scores compared to the ensembles with no antigen label removal were calculated, and

the mean of these differences were then computed for each iteration. Finally, the mean
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differences in scores from unfiltered and filtered models were compared using a two-sided

pairwise Mann–Whitney test. Additionally, top 200 unlabeled proteins ranked based on

probability scores were selected for each validation model, and the numbers of proteins

showed up in n, n − 1, n − 2, … rank lists were reported (n = 48).

4.5.10 Candidate antigen clustering and comparisons

To calculate the proximity matrix [218] for the final tree-filtered forest with 74,089

trees, a matrix was computed using the Python function apply. The matrix is symmetric

with rows and columns being the proteins, and a cell value of 1 indicates the paired proteins

end up in the same terminal nodes of a tree. The proximity matrix was then computed

by dividing the number of trees for which the paired proteins were in the out-of-bag set.

The proximity matrix was converted to a Euclidean distance matrix by subtracting the

proximity value from 1. The distance matrix was further converted to a (5,393 – 1)-

dimensional space using multi-dimensional scaling (MDS) with the R function cmdscale.

The variance explained for each dimension was calculated by dividing the eigenvalue by

the sum of all positive eigenvalues.

The top 200 candidate antigens were selected from the final ensemble. A k-means

clustering analysis was performed on the subset of the multi-dimensional data set containing

the top 200 candidate antigens. To select the optimal number of clustering groups, the

Gap statistic [272] with the Tibshirani criterion [273], Silhouettes [274], and Elbow (or

total within sum of square) methods were used. The number of clusters selected by the

three methods were 3, 2, 3, respectively. Thus, the top 200 candidates were clustered into
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three groups, and visualized along with the known antigens and reference antigens on the

first two dimensions of the uniform manifold approximation and projection (UMAP) [275]

matrix.

For the three candidate antigen groups, we quantified three measures comparing

candidate antigens between non-tree-filtered and tree-filtered ensembles: 1) probability

scores; 2) Euclidean distances from the candidate antigens to each of the four reference

antigens; and 3) differences in distances. For these comparisons, we used multiple pairwise

Mann–Whitney tests (probability scores and Euclidean distances), and Mann–Whitney test

(differences in distances), with p-values adjusted by the Benjamini–Hochberg method [276].

4.5.11 Variable importance analyses

Permutation-based variable importance [218] was calculated for the 52 known anti-

gens, 61 group 1 antigen candidates, 83 group 2 antigen candidates, and 56 group 3 antigen

candidates. For each tree in the forest, the prediction accuracy was recorded for the out-of-

bag target proteins (e.g., the 52 known antigens). For each of the 272 variables, the variable

values were permuted for all 5,393 proteins, the tree was then used to predict the response

of the permuted data set, and the prediction accuracy for the out-of-bag target proteins was

calculated. The difference in prediction accuracy before and after variable permutation was

recorded for each variable permutation. After iterating through all trees in the forest, the

results from each tree were weighted according to ensemble constituent filtering (filtered

trees have a weight of zero), and the weighted average of decrease in accuracy and the cor-

responding standard error were calculated for each variable across all trees. The final mean
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decrease in accuracy was scaled by dividing the values by the standard error. For the impor-

tance analysis for variables grouped by data categories, the variables were grouped based

on data properties (genomic, structural, proteomic, and immunological). When calculating

the importance of each data category, the grouped variables were permuted together, and

the decrease in prediction accuracy was measured after permutation.

4.5.12 Variable value comparisons of top important variables

To compare variable values, a set of non-antigens predicted by the final tree-filtered

ensemble with the same size as the target proteins (known antigens or candidate group

antigens) were randomly selected. The variable values of the target proteins and randomly

selected non-antigens were compared using a two-tailed Mann–Whitney test for all 272

variables. The p-values were adjusted for multiple tests using the Benjamini–Hochberg

procedure [276]. The variable values were normalized to be between 0–1 based on the

original data set with 5,393 proteins for better visualization. The top ten most important

variables based on the permutation-based variable importance analysis were visualized.

4.5.13 Gene ontology enrichment analysis

Candidate antigen groups were analyzed separately using the function GOEnrich-

mentStudyNS in the GOATOOLS Python package [277]. The GAF files containing associ-

ated gene ontology terms of P. falciparum 3D7 genes was retrieved from PlasmoDB [199] re-

lease 59 (2022-08-30). The directed acyclic graph file of gene ontology was downloaded from

the Gene Ontology website (http://geneontology.org/docs/download-ontology/) [278,
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279]. The argument propagate_counts was set to false for more conservative results. The

p-values generated from multiple Fisher’s exact tests were adjusted using the Benjamini–

Hochberg method (or false discovery rate; FDR) [276]. The significance cut-off was set at

0.05.

4.5.14 Candidate antigen characterization

Candidate antigens in each of the three groups were further filtered based on gene es-

sentiality that measured from saturation-level mutagenesis of P. falciparum, the threshold

of MIS <0.5 was chosen as described in the original paper [202]. After filtering, there were

2, 26, and 14 candidates in group 1, group 2, and group 3, respectively. The candidate anti-

gens were further characterized using the single-cell transcriptomic data from the Malaria

Cell Atlas [203–205] that contained 12 life stages, including five sporozoite stages, three

blood stages, three gametocyte stages, and one ookinete stage. The gene counts were nor-

malized by size factors and log2-transformed. The proportion of cells at each stage having

gene counts larger than zero, and the median and mean gene counts in the cell populations

were reported. Further, the closest reference antigen to each candidate antigen based on

the proximity matrix was identified. The final data set contained probability scores, clus-

tering groups, gene products from PlasmoDB [199] release 59 (2022-08-30), closest reference

antigen and the corresponding Euclidean distance.
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4.5.15 Statistical analyses

R version 4.2.1 (2022-06-23) and RStudio were used to perform statistical analyses.

For comparing the scores and Euclidean distances of antigen proteins and candidate anti-

gens from models with or without tree filtering, a pairwise two-tailed Mann–Whitney test

were used. For comparisons of variable values between target proteins (known or candidate

antigens) and randomly selected non-antigens, or comparisons of difference in distances

across the three candidate antigen groups, a regular two-tailed Mann–Whitney test was

conducted. Where appropriate, the p-values for multiple tests were adjusted using the

Benjamini–Hochberg procedure [276].
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Table 4.1 Significantly enriched gene ontology terms with false discovery rate (FDR)
<0.05 in gene ontology enrichment analysis of candidate antigen groups with the
background proteome of P. falciparum 3D7.

GO terms Number
of genes

−Log10
FDR

Group 1 (61
candidates)

Biological
process

Cell-cell adhesion 45 4.12
Cytoadherence to microvasculature, mediated by symbiont protein 43 3.55
Modulation by symbiont of host erythrocyte aggregation 42 3.53
Antigenic variation 43 3.50

Cellular
component

Host cell plasma membrane 44 4.74
Infected host cell surface knob 44 4.74
Integral component of membrane 54 3.91
Maurer’s cleft 5 1.34

Molecular
function

Cell adhesion molecule binding 44 4.45
Host cell surface receptor binding 51 3.71
Protein binding 8 2.65

Group 2 (83
candidates)

Biological
process

Chromatin remodeling 4 3.95
Regulation of transcription, DNA-templated 7 3.19
Positive regulation of transcription, DNA-templated 2 1.53

Cellular
component

Nucleus 45 3.57
Cytoplasm 18 3.51
Membrane 9 2.87
Extracellular region 3 2.08
Chromosome 2 1.44
Rhoptry neck 2 1.44
P-body 2 1.34
Vesicle 2 1.34

Molecular
function

DNA-binding transcription factor activity 7 4.65
ATP binding 12 4.06
DNA binding 9 4.06
Sequence-specific DNA binding 6 4.06
Protein binding 21 3.90
Actin binding 3 2.52
Chromatin binding 3 2.19
Protein phosphatase regulator activity 2 2.01
Histone-lysine N-methyltransferase activity 2 1.69
Calcium ion binding 3 1.67

Group 3 (56
candidates)

Biological
process

Cell-cell adhesion 6 4.35
Entry into host 5 3.54
Protein phosphorylation 4 2.09
Response to xenobiotic stimulus 4 1.81
Cytoadherence to microvasculature, mediated by symbiont protein 4 1.46
Modulation by symbiont of host erythrocyte aggregation 4 1.41
Cell motility 2 1.37
Antigenic variation 4 1.37

Cellular
component

Integral component of membrane 47 4.26
Nucleus 13 4.26
Membrane 16 4.23
Infected host cell surface knob 4 3.56
Host cell plasma membrane 5 2.72
Apicoplast 5 1.79
Rhoptry neck 2 1.79
P-body 2 1.66
Cytoplasm 7 1.43

Molecular
function

Heparin binding 4 3.84
Host cell surface receptor binding 7 3.84
Cell adhesion molecule binding 4 3.29
Protein kinase activity 4 2.36
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Chapter 5: Plasmodium vivax Antigen Candidate Prediction Improves with

the Addition of Plasmodium falciparum Data

5.1 Abstract

Intensive malaria control and elimination efforts have led to substantial reductions

in malaria incidence over the past two decades. However, the reduction in Plasmodium

falciparum malaria cases has led to a species shift in some geographic areas, with P. vivax

predominating in many areas outside of Africa. Despite its wide geographic distribution,

P. vivax vaccine development has lagged far behind that for P. falciparum, in part due

to the inability to cultivate P. vivax in vitro, hindering traditional approaches for antigen

identification. In a prior study, we have used a positive-unlabeled random forest (PURF)

machine learning approach to identify P. falciparum antigens for consideration in vaccine

development efforts. Here we integrate systems data from P. falciparum (the better-studied

species) to improve PURF models to predict potential P. vivax vaccine antigen candidates.

We further show that inclusion of known antigens from the other species is critical for

model performance, but the inclusion of unlabeled proteins the other species can result in

misdirection of the model toward predictors of species classification, rather than antigen

identification. Beyond malaria, incorporating antigens from a closely related species may

123



aid in vaccine development for emerging pathogens having few or no known antigens.

5.2 Introduction

Malaria is an infectious disease caused by protozoan parasites of the Plasmodium

genus, which exhibit a multi-staged, complex life cycle in the host and the vector [280].

Despite considerable reductions in the malaria burden over the past two decades, malaria

incidence has plateaued, or even increased, in the past 5-7 years [281]. The hard-won

progress is now in jeopardy due to the emergence of resistance in both the parasite and the

vector, alongside a decrease in investments in malaria control/eradication activities and

research [280–283]. Furthermore, with the reduction of Plasmodium falciparum in some

endemic areas, a shift in species composition has been reported, with Plasmodium vivax

predominating in many areas outside of Africa [284, 285]. There are several factors likely

contributing to this shift, including the ability of P. vivax to cause relapsing infections

from dormant liver stages (hypnozoites), low parasite densities that can escape standard

diagnostic tests, the early emergence of infective gametocytes prior to clinical symptom

onset, as well as a shorter development cycle in the mosquito vector [286, 287]. These fac-

tors will likely make elimination of P. vivax malaria more challenging than elimination of

P. falciparum malaria [286]. Currently, there are only a few P. vivax vaccine candidates in

the clinical development stage [287]. Vaccine development for P. vivax faces some similar

challenges as P. falciparum vaccine development, including a complex parasite life cycle

with multiple stages, where different antigens are expressed at each stage [288], as well as

genetic diversity, which is greater in P. vivax than in P. falciparum [289]. For immunogenic
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surface proteins, this genetic diversity may lead to vaccine escape, as observed in P. falci-

parum [290, 291]. Additionally, the lack of in vitro culture capabilities for P. vivax further

complicates the development of vaccines against this parasite [288].

Systems data, including whole genome sequence data, has become increasingly avail-

able for many pathogens, including Plasmodium [292–294]. Leveraging these data, Rino

Rappuoli and colleagues proposed a reverse vaccinology approach to identify potential vac-

cine antigen candidates targeting the B strains of Neisseria meningitidis (meningococci),

which resulted in the licensed MenB vaccine [295, 296]. Reverse vaccinology has been em-

ployed to a lesser extent to identify potential vaccine antigens in Plasmodium species [297].

However, these studies have primarily focused on P. falciparum, and the protein or epitope

selection criteria have been limited [298, 299]. Recently, we described a machine learning-

based approach designed to learn the properties of a limited set of known antigens using a

large number of protein variables [300]. The machine learning algorithm we used, known

as positive-unlabeled random forest (PURF) [301], is particularly useful for many classifi-

cation problems where some labels are missing, and thus, only portion of the positive class

is labeled [302, 303]. In this recent study, we trained PURF on P. falciparum with a lim-

ited number of high-quality known antigens and prioritized top-ranking candidate antigens

from the unlabeled proteins [300].

Here, we utilize the PURF algorithm to train a machine learning model to identify

potential vaccine antigen candidates for P. vivax. We further improve the model accuracy

by adding data from P. falciparum. The impact of incorporating the heterologous data

is then analyzed based on two data types: heterologous known antigens and heterologous

unlabeled proteins. Our results demonstrate that the inclusion of known antigens from a
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different species slightly improves the accuracy of vaccine antigen predictions. However,

the integration of unlabeled proteins from another species could inadvertently amplify ef-

fects related to species distinction, potentially misdirecting the classification algorithm to

focus more on protein variables that differentiate the two species over the task of anti-

gen identification. Thus, it is critical to include only labeled data from another species

in the final model. To understand variables that are important for P. vivax antigen iden-

tification, we then conduct variable importance analysis on the final model. Top-ranking

candidate antigens are clustered into three groups, which undergo further characterization.

Our methodology demonstrates potential for prioritizing and accelerating malaria vaccine

development for P. vivax and other minority Plasmodium species, presenting a promising

solution for addressing the global burden of malaria.

5.3 Results

5.3.1 Data engineering and model training

P. vivax protein variables were derived from publicly available genome assemblies,

as well as various bioinformatics analyses, including genomic, immunological, proteomic,

and structural data types (refer to Section 5.5 for further details). In this study, our ex-

isting database [300] containing solely P. falciparum protein variables was expanded to

include data from P. vivax. The data set contains 6,491 P. vivax proteins and 272 protein

variables. The selection of antigen labels for training the machine learning models was

based on the union set of antigens identified in the literature and those identified using the

immune epitope database (IEDB) [304], resulting in 38 known P. vivax antigens labeled
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as positives, with remaining proteins designated as unlabeled. Positive-unlabeled random

forest (PURF) [301] models with different hyper-parameter settings were constructed for

the P. vivax data. We compared models having different positive levels representing the

prior proportion of potential antigens within the whole proteome. Model performance was

assessed using two metrics: the area under the receive operating characteristic curve (AU-

ROC), which measures the separation of antigen and non-antigens based on prediction

scores; and the area under the curve (AUC) for percentile ranks of known antigens, quan-

tifying how these known antigens are ranked amongst all proteins. The evaluation of the

predicted probability score distributions showed that the P. vivax model with a positive

level of 0.5 had the highest AUROC, 0.99, indicating the model capability in identifying

antigens from non-antigens (Fig. D.1). Further investigation of known antigen predic-

tions revealed that the model, with positive level of 0.5, identified 34 known antigens with

percentile ranks exceeding 0.5, and a moderately high AUC of 0.84, showing the model

was able to identify known antigens. The explicit positive recall (EPR; percentage of cor-

rectly predicted labeled positives) [303,305] for known antigen prediction accuracy was 87%

(Fig. D.2 and Table 5.1). The P. falciparum data were then added into the training data

set to explore whether these data would improve the current model. Thus, PURF models

were trained using a combined data set including data from both species. The combined

model had an AUROC of 0.995 based on the probability score distribution, higher than

that of the model including P. vivax data only (Fig. 5.1a, b and Fig. D.3). All 90 known

antigens (38 P. vivax, 52 P. falciparum) were correctly predicted (EPR = 100%) by the

combined model (Table 5.1). Moreover, all known antigens had percentile ranks above 0.5

across the entire combined protein set, with an AUC of 0.94, suggesting an improvement
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in antigen predictions for both species (Fig. D.4 and 5.1b, d).

Table 5.1 P. vivax and P. falciparum known antigen prediction accuracies of PURF
models trained separately on P. vivax, P. falciparum, and combined data sets.

PURF model Prediction accuracy of P. vivax
known antigens

Prediction accuracy of P. falciparum
known antigens

P. vivax model 33 / 38 = 0.87 47 / 52 = 0.90
P. falciparum model 34 / 38 = 0.89 49 / 52 = 0.94
Combined model 38 / 38 = 1.00 52 / 52 = 1.00

5.3.2 Comparison of single-species models and the combined model

In this study, we defined the data from the focus species as autologous and referred

to the data from the other species as heterologous. We further compared the P. vivax

and P. falciparum single-species models trained on the individual species data sets against

the combined model by making heterologous predictions based on the single-species mod-

els. The P. falciparum single-species model accurately identified 89% of the heterologous

P. vivax known antigens, and the P. vivax single-species model correctly predicted 90% of

the heterologous P. falciparum known antigens. The combined species model predicted all

P. falciparum and P. vivax known antigens correctly, resulting in a 100% accuracy (Table

5.1). We further focused on the antigen prediction results of the two single-species models

to assess the predicting performance of merely merging the outputs of both models, instead

of training on a combined data set. For P. falciparum known antigen predictions, the P. fal-

ciparum and P. vivax models together correctly identified all 52 antigens. However, for the

P. vivax known antigens, only 35 out of 38 antigens were detected across both single-species

models. To validate the single and combined models, we conducted an iterative validation

process involving adversarial control [306], where we removed one antigen label at a time
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Figure 5.1 Performance of PURF models with the optimal hyper-parameter setting.
a,c Probability score (proportion of votes) distributions of the P. vivax model (a) and the com-
bined model (b). The magenta and blue shaded areas are respectively putative positives (antigens)
and putative negatives (non-antigens). The black curve was computed using a two-component
Gaussian mixture model. The areas under the receiver operating characteristic curves (AUROC)
for the P. vivax and combined models were 0.99 and 0.995, respectively. b,d Evaluation of known
antigen scores of the P. vivax (b) and the combined model (d). Dots represent known antigens.
The x-axis shows scaled ranks of the known antigens, and the y-axis denotes percentile ranks (the
higher the better) of the known antigens across all proteins in the data set. The respective areas
under the curves for the P. vivax and the combined models were 0.84 and 0.94.
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and trained the model, and computed the probability scores for the remaining known anti-

gens using the trained model. The mean difference in scores calculated by subtracting

original model score from the score from the adversarial model, were between ±0.1 for

both single-species models and the combined model (Fig. D.5). We observed two modes in

the score difference distributions of the P. vivax and the combined models. To understand

the underlying factors influencing the bimodal distribution, we examined the association

between the two distribution modes and either one of the antigen sources, including la-

beling source (literature, IEDB, or both) and species type (P. vivax or P. falciparum;

applicable to the combined model only) by compiling contingency tables and calculating

the odds ratios. The results indicated that there was a significant association between the

two distribution modes and labeling source, where the p-values for the P. vivax model

(p-value = 2.60 × 10−4) and the combined models (p-value = 1.18 × 10−5). However, there

was no significant association found between the two modes and species type (p-value =

0.66), suggesting that the model is robust to labeling of different species. Furthermore, the

adversarial control experiments showed predicted mean accuracies of 94%, 90%, and 89%

for identification of known antigens based on the P. vivax, P. falciparum, and combined

models, respectively, suggesting the robustness of the antigen prediction results.

5.3.3 Effects of heterologous positives and unlabeled proteins on combined

model performance

To explore how the addition of P. falciparum data improved the accuracy of pre-

diction of both P. vivax and P. falciparum antigens in the combined model, we further
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Figure 5.2 Probability score distributions of PURF models. Plots showing the score dis-
tributions for P. vivax (a) and P. falciparum (b) proteins. The results were generated from PURF
models trained on different combinations of autologous and heterologous data. The amber, ma-
genta, and blue colors represent known antigens, predicted antigens, and predicted non-antigens,
respectively. Grey vertical dashed lines show the probability score of 0.5. Boxplots show the me-
dian with first and third quartiles, with whiskers denoting the extension of the 1.5 interquartile
range from the first and third quartiles.
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Table 5.2 Different combinations of data from P. vivax and P. falciparum and their
corresponding model types.

Autologous data Heterologous data Model type Note

All P. vivax proteins NA Autologous model Heterologous model with
respect to P. falciparum

All P. vivax proteins P. falciparum known antigens Autologous with heterologous
positives model

All P. vivax proteins P. falciparum unlabeled proteins Autologous with heterologous
unlabeled model

All P. falciparum proteins NA Autologous model Heterologous model with
respect to P. vivax

All P. falciparum proteins P. vivax known antigens Autologous with heterologous
positives model

All P. falciparum proteins P. vivax unlabeled proteins Autologous with heterologous
unlabeled model

Proteins from both species NA Combined model

investigated the individual effects of the positive and unlabeled proteins. In addition to

the autologous single-species models and their predictions for heterologous proteins men-

tioned in the previous section, models were trained by either incorporating heterologous

positives or heterologous unlabeled proteins (Table 5.2). The probability score distribu-

tions of P. vivax and P. falciparum proteins were analyzed separately for PURF models that

were trained using different combinations of autologous and heterologous data. Compared

to autologous and heterologous model predictions, the autologous model with heterolo-

gous positives and autologous model with heterologous unlabeled proteins predicted all

known antigens correctly (EPR = 1) for both species (Fig. 5.2). However, among these

models, the combined model had the largest difference in medians between the predicted

antigen and non-antigen groups (Fig. 5.2), indicating the ability of the model to distin-

guish antigens more clearly from non-antigens among the unlabeled proteins. Moreover, it

was observed that in the autologous models including heterologous unlabeled proteins, the

predicted autologous non-antigens consistently received higher prediction scores compared

to other models, suggesting a possible confounding of antigen identification and species

classification (Fig. 5.2). Next, we focused on the labeled positives (known antigens) and
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the unlabeled proteins for each species. The percentile ranks of the known antigen predic-

tions from the combined model, the autologous model with heterologous positives, and the

autologous model with heterologous unlabeled proteins all had AUCs values >0.9 for both

species (Fig. D.6). Antigen predictions of unlabeled proteins from both species (antigen or

non-antigen) were further analyzed for their association with their corresponding species

(P. vivax or P. falciparum). When using Cramér’s V to assess the strength of the associ-

ation with species, we found that the single-species and combined models had a relatively

weak association, <0.10. In contrast, the autologous model with heterologous positives

had a strong association with species (>0.61), and the autologous model with heterologous

unlabeled proteins displayed an even stronger association above 0.80 (Table D.1). Together

with the observed the score distributions of predicted antigens and non-antigens described

above, this suggests that solely adding the heterologous unlabeled proteins from another

species may misdirect the model to classify species rather than antigens. Additionally, it

was noted that there is a significant relationship (F -statistic test; p-value = 0.012) between

the mean tree depth in the model and the proportion of positives in the training data set

(Fig. D.7), suggesting labeled data are important for a model to learn the comprehensive

patterns among the data.

5.3.4 Analysis of model prediction space and species effect

To gain insights into the antigen prediction of the combined model, we computed

the prediction space derived from the tree-based structures within the PURF model. The

subsequent visualization revealed distinct clusters of predicted antigens for each species,
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whereas the predicted non-antigens appeared within a single, larger cluster irrespective of

species (Fig. 5.3). To elucidate the effect of species on the predicted antigens, we conducted

hierarchical clustering of the predicted antigens. Starting from the root of the dendrogram,

the predicted antigens were iteratively divided into two groups, and the group with the

higher mean predicted probability score was selected for the next iteration and continued

for four interactions (Fig. D.8). For the first three iterations, the statistical analysis showed

a significant association between the two clustering groups and species (χ2 test, p-values

for the four iterations: 1.11 × 10−10, 6.50 × 10−46, <2.23 × 10−308, and 0.33). Notably, the

third iteration had the strongest association between cluster group and species (Cramér’s

V = 0.94; 95% CI: 0.93, 0.95), whereas the remaining three iterations demonstrated weaker

association strengths (Cramér’s V for the first, second, and fourth iterations: 0.09, 0.24,

and 0.02). The results indicated that there might be species-specific effects, with predicted

antigens having higher scores. Thus, species-specific antigens may be identified with a

higher score threshold. To gain a deeper understanding of whether the observed species

effects were attributable to differences in amino acid composition of protein sequences in

each species, we performed an association analysis between the amino acid frequencies

and species. The results, based on Cramér’s V, showed there was a weak association of

0.20 across all proteins, with a slight increase in association strength to 0.24 for predicted

antigens, and a lower association strength of 0.10 for predicted non-antigens, suggesting

that amino acid composition may not be the primary driver of the observed species effect.
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Figure 5.3 Visualization of the prediction space of the combined PURF model. a,b
Uniform manifold approximation and projection (UAMP) plots highlighting the P. vivax (a) and
P. falciparum (b) proteins in the prediction space derived from the Euclidean distance matrix
of the combined PURF model. Dots represent proteins in the combined set with P. vivax and
P. falciparum data. Autologous proteins with higher probability scores are shown by darker
magenta color and lower scores by darker blue color. Grey dots display P. vivax and P. falciparum
heterologous proteins in (a) and (b), respectively. Dots with amber color indicate known antigens
for P. vivax and P. falciparum respectively in (a) and (b), with corresponding reference antigens
annotated by protein names.

135



5.3.5 Variables contributing to Plasmodium antigen prediction

To understand the most important variables for Plasmodium antigen prediction us-

ing the combined models, we conducted a permutation-based variable importance analy-

sis [307]. All four data types, including genomic, immunological, proteomic, and structural

data, were represented in the top 10 most important variables (Fig. 5.4a). Among these 10

variables, the following exhibited higher values in known antigens compared to randomly

selected non-antigens: secretory signal peptide probability, glycosylphosphatidylinositol

(GPI)-anchor specificity score, number of non-synonymous single nucleotide polymorphisms

(SNPs), total length of low complexity regions, small amino acid percentage, number of

interferon (IFN)-gamma inducing epitopes, and maximum score of Parker hydrophilicity

for predicted epitopes (Fig. 5.4a). In contrast, known antigens had a decreased percentage

of amino acids with high normalized van der Waals volume (between 4.03–8.08), and a re-

duced percentage of amino acids with high polarizability (between 0.219–0.409) (Fig. 5.4a).

The analysis of variable importance in the P. vivax single-species model showed that among

the top 10 variables, five were immunological variables associated with B-cell epitopes, IFN-

inducing epitopes, and antigenicity predictions (Fig. D.9a). Further analysis of the group

variable importance, categorized by data types, indicated that proteomic and immunolog-

ical variables may contribute more to the accuracy of antigen predictions in the combined

model (Fig. 5.4b), which was consistent with the P. vivax group variable importance analy-

sis results (Fig. D.9b). The comparison of top 10 important variables independently identi-

fied from the two single-species models and the combined model revealed that two variables,

namely secretory signal peptide probability and number of non-synonymous SNPs, were
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identified by all three models (Fig. 5.5). Both the P. vivax and the combined model showed

concordance on three additional variables, and the P. falciparum and the combined model

showed agreement on an additional four variables (Fig. 5.5). We performed comparative

analysis to examine the changes in importance values for the top 10 variables determined by

the combined model. The results showed that in the combined model, all 10 variables had

greater importance values compared to the two single-species models, suggesting the high

influence of these variables regarding prediction accuracy in the combined model. When

comparing the two single-species models, six variables had higher importance in P. vivax,

and four variables demonstrated a higher importance value in P. falciparum (Fig. D.10),

indicating the contributions of both species in the combined model.

5.3.6 Characterization of top vaccine antigen candidates

From the combined model, 190 top candidate antigens were selected based on their

probability scores, where the score threshold was set above the median ranking of the

90 known antigens labeled positive in the combined PURF model. The top candidates

comprised 35 proteins from P. vivax and 145 proteins from P. falciparum. We performed

hierarchical clustering analysis to further characterize the top candidates. The Silhouette

[308] method identified two distinct groups, and the Elbow (or total within sum of square)

method identified three groups in the dendrogram. We further visualized the groups in

the prediction space and found that one of the two groups identified by the Silhouette

method exclusively consisted of 35 candidate antigens from P. vivax (Fig. D.11a, group 1

in blue). The other group was further divided into two based on the Elbow method, and one
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Figure 5.4 Model interpretation of the combined PURF model on the prediction of
known antigens. a Top 10 important variables computed using permutation-based variable
importance analysis on the tree-based PURF model. The left panel shows variable importance
values in terms of mean decrease in prediction accuracy after variable permutation. The accuracy
was calculated for the 90 known antigens from both Plasmodium species. Variables are categorized
into genomic (dark blue), immunological (green), proteomic (blue), and structural (amber) data
types. The right panel displays corresponding variable values normalized to range between 0 and
1. Magenta dots represent the 90 known antigens, and the blue dots show 90 predicted non-
antigens that were randomly selected. Boxplots convey median with first and third quartiles, and
the whiskers indicate the 1.5 interquartile range extended from the first and third quartiles. Two-
sided Mann–Whitney tests were conducted with p-values adjusted using the Benjamini–Hochberg
procedure, and p-values are shown on the right of the panel. b Permutation-based group variable
importance analysis. Variables were grouped by data types and permuted together to calculate
the mean decrease in accuracy across all trees in the model.
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subcluster contains one candidate antigen from P. vivax and 38 candidate antigens from

P. falciparum (Fig. D.11b, group 3 in orange). Gene ontology (GO) enrichment analysis was

performed to identify significantly enriched GO terms within the three clusters. Group 1,

containing only P. vivax candidate antigens, was associated with intracellular activities and

locations (Fig. D.12a). Group 2, comprising nine P. vivax and 107 P. falciparum antigens,

had enriched GO terms related to immunological processes, host-pathogen interactions, and

cell membranes (Fig. D.12b). Group 3 was characterized by its association with integral

components of the membrane as well as the nucleus (Fig. D.12c). Moreover, there were five

and four P. vivax candidates respectively in group 1 and group 2 not having orthologs in

P. falciparum, indicating potential candidates for species-specific vaccine. A summary table

was generated for the top candidate antigens, providing detailed information regarding gene

products, the closest known antigens, and the respective species corresponding to the known

antigens. Interestingly, for the nine P. vivax candidates in group 2, six were closest in the

variable space to known antigens from P. falciparum, demonstrating that the inclusion of

P. falciparum data aided in the identification of potential vaccine candidate antigens for

P. vivax.

5.4 Discussion

Proteomes are limited in size, and this is often the case in other machine learning

problems. The inclusion of external data, such as crowdsourcing and synthetic data gen-

eration, has become one of the strategies to improve machine learning models [309]. Here,

we showed that augmenting the P. vivax training data set with the P. falciparum pro-
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Figure 5.5 Venn diagram of top 10 important variables from different PURF models.
Top important variables were identified separately from the combined, P. vivax, and P. falciparum
models. Variable names are colored by the corresponding categories.
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teome assisted in identification of antigens for both species. We further decomposed the

effect of adding heterologous species data with the inclusion of either known antigens or

unlabeled proteins. We demonstrated that inclusion of both heterologous known antigens

and unlabeled proteins is important in improving the model performance. We also noticed

that adding the heterologous unlabeled proteins alone may potentially transform the anti-

gen identification problem into a species classification problem, leading to identification

of proteins based on variables relevant to differentiating between P. vivax and P. falci-

parum rather than identification of proteins representing antigens from either species. We

conducted a variable importance analysis to understand which protein variables have the

greatest influence on antigen identification in the final combined model, and observed that

variables related to secretory signal peptides and GPI-anchors, hallmarks of surface pro-

teins exposed to the host immune response, were the best predictors of antigens. Candidate

antigens with the highest prediction scores clustered into three groups corresponding to in-

tracellular activities, immune responses, and cellular membrane along with microtubules,

respectively. Moreover, one of the closest reference antigens to group 1 is P. vivax MSP1,

and P. falciparum P230 is the closest reference antigen to all three groups.

Although P. falciparum is responsible for most malaria cases and deaths, P. vivax is

the most geographically pervasive species, predominating in regions of Southeast Asia and

South America. This wider geographic distribution and the unique biological properties of

P. vivax that hinder elimination highlight the need for vaccines against this species. Most

vaccine development efforts have focused on P. falciparum and have led to one WHO-

recommended vaccine (i.e., MosquirixTM (RTS,S/AS01) [310]), as well as other promising

vaccine candidates, such as the R21/MatrixM vaccine [311]. However, challenges remain
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for vaccine development against other human malaria parasites, such as P. vivax. To date,

there have been only a few P. vivax vaccine candidates evaluated in clinical trials, includ-

ing those targeting the circumsporozoite protein (PvCSP), Duffy-binding protein (PvDBP),

and ookinete surface protein (Pvs25) [312]. Moreover, P. vivax cannot be maintained in

continuous in vitro culture, posing a challenge for identification and preclinical evalua-

tion of vaccine candidates [313]. Reverse vaccinology has been applied to malaria vaccine

development to identify potential antigens or epitopes, with most studies focusing on P. fal-

ciparum [298, 299, 314, 315]. One study of P. vivax performed computational analyses to

identify B-cell epitopes in the merozoite surface protein-9 only [316]. Similarly, in another

study, only a set of 39 P. vivax merozoite proteins were investigated, however, the selection

criteria in terms of protein properties were not explicitly specified [317]. By employing a

machine learning-based reverse vaccinology approach, we explored the whole proteome of

P. vivax and a large number of protein properties. By including data from P. falciparum, we

improved the single-species model trained solely on P. vivax data and identified potential

P. vivax vaccine antigen candidates in silico. Although future work would include experi-

mental validation of the top antigen candidates, our approach helped facilitate the selection

of candidate antigens compared to traditional approaches that could be time-consuming.

To our knowledge, none of the P. vivax candidate antigens in group 1 have been identified

before, and only two out of nine P. vivax candidate antigens in group 2 were discussed in

the literature, with one being a potential invasion-related ligand (PVP01_0534300) [318]

and the other predicted as a secretory protein (PVP01_0948700) [319]. The remaining

unknown P. vivax antigen candidates are mostly annotated as putative proteins, with

functions related to accessibility to the host immune system, such as TRAP-like protein,

142



surface protein P113, and secreted ookinete protein.

In this study, various bioinformatics tools have been developed to compute protein

properties, which are essential in reverse vaccinology [320]. To be recognized by the host

immune system, it is critical to include indicators showing that the proteins are exposed

to the extracellular environment [297, 320]. In our study, among all 272 protein variables,

secretory signal peptide probability, computed using SignalP [321], was ranked as the most

important variable in model prediction for the combined and single species models. The

results also showed the importance of non-synonymous SNPs in antigen prediction. Such

non-synonymous polymorphisms are common in highly immunogenic, know antigens that

have evolved diversity under immune pressure. Although non-synonymous SNPs are im-

portant predictors of antigens based on the known antigens used to train the models,

genetic diversity can also contribute to vaccine escape, which has posed a problem for

malaria vaccines [291] and vaccine against other pathogens. Thus, further filtration of the

predicted antigens can be applied to obtain potentially less immunogenic, but more ge-

netically conserved candidate antigens, whose immunogenicity may be improved using an

adjuvant. The P. vivax model in this study also identified more immunological variables

among the most important predictor variables compared to the P. falciparum model. This

result could stem from differences in amino acid composition between the species and the

extremely AT-biased P. falciparum genome [322], possibly affecting the quality of epitope

predictions. Finally, for the candidate antigen groups containing P. vivax antigens, group

1 was associated with intracellular activities, and group 2 proteins had gene ontology terms

consistent with protein exposure to the immune system, including host cell plasma mem-

brane, infected host cell surface knob, and integral component of membrane. As antigens
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need to be exposed to be recognized by the immune system [292, 323], P. vivax proteins

in group 2 may be better candidates for inclusion in a vaccine. Additionally, there were

four P. vivax proteins in group 2 without corresponding P. falciparum orthologs, indicating

the model did not identify antigens based purely on protein sequence homology, as well as

demonstrating the selection of potential species-specific vaccine targets.

In this study, data from a well-characterized species, P. falciparum, was included in

machine learning models to inform vaccine antigen identification of a less well-characterized

species, P. vivax, with reference antigens from both species being utilized to instruct the

selection of P. vivax candidate antigens. The approach described here identified and prior-

itized candidate antigens from the P. vivax proteome, of which about 78.9% are proteins

with putative or unknown functions. In addition to P. falciparum and P. vivax, clinical

malaria cases have been reported for P. ovale and P. malariae [324–327], and more recently,

P. knowlesi, a simian Plasmodium species that causing an increased incidence of human

clinical infections in Malaysia and areas of Southeast Asia [328–331]. The genomes of

these minor Plasmodium species have also been sequenced, and the machine learning-based

analytical methodology developed in this study can also be applied to identify vaccine can-

didate antigens for these species. Beyond malaria, our approach can be applied to other

emerging pathogens having few known antigens, where data from a related, well-studied

species can contribute to improved antigen identification by machine learning models.
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5.5 Methods

5.5.1 Data collection

Protein sequences from the P. vivax P01 and P. falciparum 3D7 strains were ex-

tracted from PlasmoDB [332] release 45 (2019-09-05) and release 43 (2019-04-25), respec-

tively. Proteins with stop codons or “X” symbols in their sequences or those derived from

pseudogenes were filtered out. Selenocysteines were replaced with cysteines to support

downstream bioinformatic analyses. The resulting 6,491 P. vivax and 5,393 P. falciparum

proteins were subsequently analyzed. The protein variables, to be used as input for the ma-

chine learning model, were gathered either from public databases or analyzed using various

bioinformatics programs, as detailed below. The resulting 272 variables were categorized

into four groups: genomic, immunological, proteomic, and structural. These variables were

stored in an in-house database [300] (MariaDB version 10.3.22, https://mariadb.com/)

for facile data manipulation.

The genomic variables included data related to single nucleotide polymorphisms

(SNPs), which were analyzed using whole genome sequencing and were directly down-

loaded from the genetic variation section in PlasmoDB [332] (235 for P. vivax and 365 for

P. falciparum). Various measurements of SNPs were considered, such as the total number

of SNPs, the numbers of non-synonymous, synonymous, nonsense, and non-coding SNPs,

the ratio of non-synonymous to synonymous SNPs, and the number of SNPs per kilobase

of the coding sequence. Immunological variables comprised predictions of various epitopes

such as T-cell epitopes [333], B-cell epitopes [334–336], cytotoxic T-cell epitopes [337],
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chemokine inducer epitopes [338, 339], and transporter associated with antigen processing

(TAP) binding peptides [340]. Additionally, they contained major histocompatibility com-

plex (MHC) class I epitopes [341], MHC class II epitopes [342], as well as assessments of

antigenicity [343] and immunogenicity [344]. The epitope-related data were summarized

based on numbers, maximum, mean, and minimum scores of epitopes within the pro-

tein sequence. Proteomic variables consisted of predictions regarding subcellular localiza-

tion [345], malarial adhesins/adhesin-like proteins [346], and a set of physicochemical prop-

erties [347–349], such as length, weight, isoelectric point, percentage of hydrophobic amino

acids. Further, predictions of glycosylphosphatidylinositol (GPI)-anchored proteins [350],

signal cleavage [351], protein solubility [352], N-linked or O-linked glycosylation sites [353],

and similarity to human proteins [354] were also included. Structural variables contained

transmembrane helix predictions [355], sequence complexity [356], and predictions of beta

turn [357], surface accessibility [358], and flexibility [359]. Relevant variables were subse-

quently integrated to construct additional variables. For instance, epitope predictions were

combined with transmembrane predictions to derive variables that represent epitopes in

outer, inner, or transmembrane regions.

5.5.2 Known antigen labeling

Known antigens were collected from both literature and the Immune Epitope Database

(IEDB). The web-based tool Covidence (www.covidence.org) was used to select relevant

papers or documents using the search terms “malaria vaccine”, “malaria vaccine candi-

date”, “malaria vaccine antigen”, and “malaria vaccine protein”. To ensure the quality of
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known antigen labeling, each of the resulting papers and documents was manually reviewed

to select the malaria vaccine candidates for inclusion as known antigens in this study. For

IEDB-based known antigen labeling, data were retrieved from PlasmoDB under the im-

munology section. Known antigens were selected if the PlasmoDB proteins exhibited a

similarity score of 97% or higher with GenBank proteins in the IEDB, and if all corre-

sponding epitopes exactly matched the PlasmoDB protein sequence. For P. falciparum,

177 known antigens were selected from the literature and 373 from IEDB. For P. vivax, 24

known antigens were chosen from literature and 20 from IEDB. The known antigens for

P. falciparum were determined by the intersection of the two sources, containing 52 known

antigens. To get a comparable number of known antigens for P. vivax, the union of the

two sources was computed, resulting in 38 known antigens.

5.5.3 Machine learning data assembly and data combinations

Protein variable data for P. vivax were retrieved from our in-house database, with

antigen labels appended as an additional column. In this label column, known antigens

were assigned a value of one, and the remaining proteins were marked with a value of zero.

The data from P. vivax and P. falciparum were merged to train a combined model. Addi-

tionally, two variants of combined data were created by incorporating subsets of data from

each species. First, data containing both autologous proteins and heterologous positives

were generated either by combining P. falciparum known antigens with the P. vivax data

set or vice versa. Second, data comprising autologous proteins and heterologous unlabeled

proteins were obtained either by adding P. falciparum unlabeled proteins to P. vivax data
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set or vice versa. Refer to Table 5.2 for a detailed overview of models and their correspond-

ing input data.

5.5.4 Positive-unlabeled random forest training

The positive-unlabeled random forest (PURF) algorithm [301] has been optimized

and tailored specifically to tackle the antigen identification problem [300]. PURF has the

advantages inherited from conventional random forest, such as resilience to errors, insen-

sitive to outliers, and high predictive power. Given the scarcity of known antigens, we

enforced learning by implementing a variable space weighting process. In this process,

known antigens were weighted based on the variable space, thereby enhancing their rep-

resentations. Specifically, the center point of the known antigens in the variable space

was computed and the Euclidean distances from each known antigen to this center point

were scaled into integer values ranging between 1 and 10. Through this approach, known

antigens were duplicated based on the integer weights, resulting in a total of 83 known

antigens labeled as positive in the P. vivax data set. Regarding the combined data set,

which includes known antigens from both P. vivax and P. falciparum, the total number of

known antigens was 181.

PURF models, each composed of 100,000 trees, were independently trained on the

P. vivax and combined data sets, including the variants of the combined data. The ensem-

ble constituent filtering procedure was subsequently applied to the trained PURF models

to further prioritize the top-scored unlabeled proteins, guided by the selected reference

antigens. The reference antigens for P. vivax included the circumsporozoite protein (CSP,
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PVP01_0835600.1-p1), the Duffy binding protein (DBP, PVP01_0623800.1-p1), and the

merozoite surface protein-1 (MSP-1, PVP01_0728900.1-p1). For P. falciparum, the refer-

ence antigens were the circumsporozoite protein (CSP, PF3D7_0304600.1-p1), the mero-

zoite surface protein-5 (MSP-5, PF3D7_0206900.1-p1), the transmission-blocking target

antigen s230 (P230, PF3D7_0209000.1-p1), and the reticulocyte binding homolog 5 (RH5,

PF3D7_0424100.1-p1). Briefly, any trees that either lacked all reference antigens in the

out-of-bag set or incorrectly predicted the reference antigens in the out-of-bag set were

discarded. For the P. vivax model, the resulting number of trees was 93,102, and for the

combined model, 86,254 trees remained after the filtering process.

5.5.5 Positive-unlabeled random forest evaluation

To optimize the P. vivax and the combined models, a fine-tuning process on the posi-

tive level hyper-parameter was conducted. The positive level describes the prior proportion

of potential antigens in the proteome. The process involved training the models across a

spectrum of positive level values, ranging from 0.1 and incremented by 0.1 until 0.9. The

models were then evaluated with two defined criteria [300]. The first criterion relied on the

probability score distribution generated from the PURF model. A two-component Gaus-

sian mixture model was utilized to estimate the putative true and false positive rates from

the distribution, and the area under the receiver operating characteristic (AUROC) curve

was subsequently computed. The second criterion examined the percentile ranks of the

known antigens within the entire proteome based on the probability scores, and the ex-

plicit positive recall (EPR) [303,305] was calculated as well. The percentile ranks were also
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visualized with respect to the antigens ranked by probability scores, and the area under the

curve (AUC) was computed. Based on the two criteria, a positive level of 0.5 was selected

for both the P. vivax and the combined models.

5.5.6 Adversarial control analysis

To assess and validate the robustness of the models, adversarial controls [306] were

generated by changing the positive label to unlabeled for each known antigen in turn,

excluding the reference antigens. In each iteration, after assigning a zero value to a known

antigen, variable space weighting was applied to the altered data set. Subsequently, a

model was trained, and the trees in the model were filtered using the ensemble constituent

filtering procedure. Out-of-bag probability scores were then computed for the remaining

known antigens that did not have their labels removed. As the reference antigens were

excluded from the analysis, there were 35 adversarial control models generated for the

P. vivax data set, and 83 for the combined data set. The resulting data were further

analyzed in two ways. First, the scores of known antigens in each adversarial control had

the baseline scores derived from the original models subtracted from them, following which

the mean difference was calculated. The mean differences in scores from all adversarial

controls were then compared across the P. vivax, P. falciparum, and the combined data sets.

Second, for each adversarial control model, the accuracy of the remaining known antigens

was computed using a probability score threshold of 0.5. The results of all adversarial

control models were summarized as a mean and standard deviation, and compared across

the P. vivax, P. falciparum, and the combined data sets. To further investigate the two
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modes observed in the distribution of differences in scores, a two-sided Fisher’s exact test

was performed using the function fisher.test in R stats, version 4.2.3. This test was utilized

to compare the two modes with either species types or known antigen source, where the

odds ratio and p-value were subsequently calculated.

5.5.7 Comparison of models trained with different data combinations

As described in the above section in Methods, variants of combined data were gen-

erated by integrating portions of data from P. vivax and P. falciparum. Multiple PURF

models were compared to understand the impact of autologous and heterologous data. For

each species, these models included the single species model (which can be viewed as either

an autologous or heterologous model, depending on the species for which the prediction

score were generated), the combined model, the autologous with heterologous positives

model, and the autologous with unlabeled model. Models were then compared based on

scores of known antigens and predictions of unlabeled proteins. For each species, the score

distribution for each model was visualized by plotting the densities and boxplots of the

known antigens, along with predicted antigens and non-antigens, as shown in Figure 5.2.

Known antigens were further quantified using EPR and percentile ranks, where the AUC

values were computed. Subsequently, the predictions for unlabeled proteins were compared

by examining the association between antigen predictions and species types using a χ2 test,

utilizing the function chisq.test in R stats, version 4.2.3. The strength of the association was

further analyzed using Cramér’s V, using the function cramerV in the R package rcompan-

ion, version 2.4.30 [360]. The 95% confidence interval of Cramér’s V was calculated using
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a bootstrap approach with 1,000 replications. Additionally, the mean tree depths across

all trees in each type of model were calculated and compared to the proportion of positives

in the training data set. A linear model was fitted using the lm function in R stats, version

4.2.3. The dependent variable mean tree depth was log2-transformed, and the logit function

was applied to the independent variable proportion of positives. The regression function

was log(y) = 6.8 + 0.87 · logit(x), and the adjusted R2 was 0.7. The p-value derived from

the F -test was 0.01.

5.5.8 Model interpretation of the combined model

A proximity matrix quantifying closeness between proteins in the model was com-

puted. Specifically, for any pair of proteins in the training data set, the proximity value

was calculated by counting the times the pair was in the out-of-bag set and ended in the

same leaf across all trees. The proximity value was then normalized by dividing the value

by the number of times the pair of proteins was in the out-of-bag set. The proximity value

ranges from zero to one, which was then transformed into a Euclidean distance by subtract-

ing its value from one, resulting in a dissimilarity matrix. To further reduce the dimensions

of the dissimilarity matrix, multidimensional scaling, also known as principal coordinates

analysis, was applied using the cmdscale function in R stats, version 4.2.3. For enhanced

visualization, a two-dimensional representation was constructed by employing the uniform

manifold approximation and projection (UMAP) [361] method with two components.
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5.5.9 Clustering and amino acid composition analyses of model predictions

To further explore the separation of predicted antigens observed in the aforemen-

tioned visualization of the model predictions based on the dissimilarity matrix, the Ward’s

hierarchical agglomerative clustering method [362] was utilized to analyze the data, using

the R stats function hclust, along with the “ward.D2” implementation [363]. A dendro-

gram was generated through the hierarchical clustering analysis, and an iterative process

was initiated to segregate predicted antigens into groups. In each iteration, the predicted

antigens were split into two groups according to the dendrogram. To assess the association

between the groups and the species types, a χ2 test and Cramér’s V were computed. A

sub-dendrogram was then created from one of the two groups having the higher average

probability score, and the iterative process continued. A total of four iterations were gen-

erated, yielding χ2 p-values of 1.11 × 10−10, 6.50 × 10−46, <2.23 × 10−308, and 0.33. The

Cramér’s V values, along with the 95% confidence interval (CI) values, were 0.09 (95% CI:

0.06, 0.11), 0.24 (95% CI: 0.21, 0.27), 0.94 (95% CI: 0.93, 0.95), and 0.02 (95% CI: 0.00,

0.08). The resulting groups were further visualized on the UMAP representation of the

dimension-reduced dissimilarity matrix, as detailed previously in the model interpretation

section. Finally, to evaluate the association between amino acid composition and species

types, an association analysis was conducted to analyze the two variables in three groups:

the whole proteome, the predicted antigens, and the predicted non-antigens. For the whole

proteome group, the frequencies of the 20 amino acids were independently computed for

the proteomes of P. vivax and P. falciparum. For the predicted antigen and non-antigen

groups, the amino acid frequencies of the two species were computed for each group as
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well. In each comparison group, the association between the amino acid frequencies and

the species types was evaluated using a χ2 test and Cramér’s V.

5.5.10 Variable importance analysis

To understand the important variables in model predictions, a permutation-based

variable importance analysis was performed on the trained PURF models using the method

proposed by Breiman [307]. To explore patterns in variable values, the values were first

normalized to range between 0 and 1 for each variable. A set of predicted non-antigens with

the same size as the known antigens in the training data set was then randomly selected.

Next, to compare the variable values between the known antigens and the predicted non-

antigens that were randomly selected, a two-sided Mann–Whitney test was performed. The

Benjamini–Hochberg [364] method was applied to adjust the p-values for comparisons of all

272 variables. Additionally, a permutation-based group variable importance analysis was

conducted for the four variable groups: genomic, immunological, proteomic, and structural.

The process was the same as described earlier except that variables within the same group

were permuted together to compute their collective impact on prediction accuracy. Finally,

top 10 important variables in the P. vivax, P. falciparum, and combined models were

compared using a Venn diagram. To understand how the top 10 important variables of

the combined model influence the prediction accuracy of the known antigens in the single-

species models, importance values of this identical variable set were compared across all

three models.
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5.5.11 Clustering of top candidate antigens

Top candidate antigens were selected based on a probability score threshold, where

half of the known antigens were scored above this threshold, resulting in 190 potential vac-

cine antigen candidates. A dissimilarity matrix of these top candidate antigens, computed

from the tree-based structures in the model, was then analyzed using Ward’s hierarchical

agglomerative clustering method [363], as previously described. The number of clustering

groups was determined using Gap statistic with the Tibshirani criterion [365,366], Silhou-

ette [308], and Elbow (or total within sum of square) methods. These methods identified

1, 2, and 3 groups, respectively. As a result, top candidate antigens were clustered into

either two or three groups. The groups were then visualized on a two-dimensional UMAP

representation. For the clustering with two groups based on the Silhouette method, group 1

contained 35 P. vivax and 0 P. falciparum candidate antigens, while group 2 had 10 P. vivax

and 145 P. falciparum candidates. For the clustering with three groups based on the Elbow

method, group 1 contained 35 P. vivax and 0 P. falciparum candidates, group 2 comprised

9 P. vivax and 107 P. falciparum candidates, and group 3 consisted of 1 P. vivax and

38 P. falciparum candidates. Orthologs were identified through searching in PlasmoDB,

which was based on the data set generated using the OrthoMCL algorithm [367, 368]. A

summary table was subsequently generated to display information of the top candidate

antigens, which include the associated clustering groups, probability scores, gene products

(retrieved from PlasmoDB [332], release 62), the closest known antigens and their source,

as well as the Euclidean distance (ranging from 0 to 1) to the closest known antigen.
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5.5.12 Gene ontology enrichment analysis

To better understand gene ontology (GO) terms associated with the three groups

of candidate antigens, an enrichment analysis was conducted using the Python package

GOATOOLS [369]. The gene ontology terms for P. vivax and P. falciparum were down-

loaded directly from PlasmoDB [332], release 62 (2023-03-09). The file containing the

directed acyclic graph of gene ontology was retrieved from the Gene Ontology website

(http://geneontology.org/docs/download-ontology/) [370, 371]. For more conserva-

tive results, the argument propagate_counts in the function GOEnrichmentStudyNS was

set as false. GO enrichment analysis was performed with the background proteomes from

both P. vivax and P. falciparum species. The p-values from the multiple Fisher’s exact tests

were adjusted using the Benjamini–Hochberg [364] method. Enriched GO terms, identified

based on the significant cut-off of 0.5, were categorized into biological process, cellular com-

ponent, and molecular function, and were further visualized for each of the three candidate

groups.
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Appendix A: Supplementary Information for Machine Learning-Driven Mul-

tifunctional Peptide Engineering for Sustained Ocular Drug

Delivery

A.1 Supplementary Notes

Supplementary materials, including the research notebook containing the code of the

machine learning algorithms, have been deposited as a compressed folder (∼2.74 GB in

total) in the Digital Repository at the University of Maryland (DRUM) with the identifier

https://doi.org/10.13016/0jck-hnnv. To open the research notebook, download and

decompress the folder, go to the subfolder main_notebook, and click on index.html to

open the HTML document in a web browser, or click on main_notebook.pdf to open the

PDF document. Data generated in this research have been stored in the subfolders data

and other_data. The following shows the descriptions of the data files and their locations.

A.1.1 Machine learning input data sets

The peptide_variable_descriptions.csv file contains descriptions of peptide vari-

ables calculated in the input data sets for machine learning. The other data files are the

machine learning input data sets, including pilot and second melanin binding peptide mi-

158

https://doi.org/10.13016/0jck-hnnv


croarray data for training classification and regression machine learning models, as well as

cell-penetration and cytotoxicity peptide data for training classification models.

data/peptide_variable_descriptions.csv

data/mb_pilot_peptide_array_ml_input.csv

data/mb_second_peptide_array_ml_input.csv

data/cpp_ml_input.csv

data/tx_ml_input.csv

A.1.2 Machine learning cross-validation results

A nested cross-validation framework was applied in this study, where the inner loop

cross-validation is used to select the best performing subset of models, and the outer loop

cross-validation is used estimate generalization performance. The cv_res_statistical_

testing.csv files in the subfolders outer_1 through outer_10 correspond to each inner

loop cross-validation fold, and in subfolder whole_data_set corresponds to the final outer

loop cross-validation results. Models were scored and ranked based on multiple metrics. For

regression the metrics were mean absolute error, root mean squared error and coefficient

of determination (R2). For classification the metrics were log loss, Matthews correlation

coefficient, F1 (harmonic mean of precision and recall), and balanced accuracy. The cross-

metric rank was determined by summing the ranks of the individual metrics. Multiple

statistical tests were performed by comparing the metric scores (n = 10) of the best model

to all other models. Adjusted p-values were reported. The best model and models with

no significant difference in all metrics from the best model were included in the files. The
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numbers of those competitive models were indicated in the parentheses below. The files

containing grid search model parameters were also provided for melanin binding, cell-

penetration, and cytotoxicity models.

A.1.2.1 Melanin binding models

other_data/melanin_binding/neural_network_grid_params.csv

other_data/melanin_binding/gbm_grid_params.csv

other_data/melanin_binding/xgboost_grid_params.csv

other_data/melanin_binding/outer_1/cv_res_statistical_testing.csv (2 competitive mod-

els)

other_data/melanin_binding/outer_2/cv_res_statistical_testing.csv (50 competitive mod-

els)

other_data/melanin_binding/outer_3/cv_res_statistical_testing.csv (15 competitive mod-

els)

other_data/melanin_binding/outer_4/cv_res_statistical_testing.csv (43 competitive mod-

els)

other_data/melanin_binding/outer_5/cv_res_statistical_testing.csv (41 competitive mod-

els)

other_data/melanin_binding/outer_6/cv_res_statistical_testing.csv (49 competitive mod-

els)

other_data/melanin_binding/outer_7/cv_res_statistical_testing.csv (19 competitive mod-

els)

other_data/melanin_binding/outer_8/cv_res_statistical_testing.csv (33 competitive mod-

els)
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other_data/melanin_binding/outer_9/cv_res_statistical_testing.csv (32 competitive mod-

els)

other_data/melanin_binding/outer_10/cv_res_statistical_testing.csv (26 competitive mod-

els)

other_data/melanin_binding/whole_data_set/cv_res_statistical_testing.csv (31 compet-

itive models)

A.1.2.2 Cell-penetration models

other_data/cell_penetration/neural_network_grid_params.csv

other_data/cell_penetration/gbm_grid_params.csv

other_data/cell_penetration/xgboost_grid_params.csv

other_data/cell_penetration/outer_1/cv_res_statistical_testing.csv (272 competitive mod-

els)

other_data/cell_penetration/outer_2/cv_res_statistical_testing.csv (227 competitive mod-

els)

other_data/cell_penetration/outer_3/cv_res_statistical_testing.csv (277 competitive mod-

els)

other_data/cell_penetration/outer_4/cv_res_statistical_testing.csv (303 competitive mod-

els)

other_data/cell_penetration/outer_5/cv_res_statistical_testing.csv (300 competitive mod-

els)

other_data/cell_penetration/outer_6/cv_res_statistical_testing.csv (303 competitive mod-

els)

other_data/cell_penetration/outer_7/cv_res_statistical_testing.csv (304 competitive mod-

els)
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other_data/cell_penetration/outer_8/cv_res_statistical_testing.csv (303 competitive mod-

els)

other_data/cell_penetration/outer_9/cv_res_statistical_testing.csv (122 competitive mod-

els)

other_data/cell_penetration/outer_10/cv_res_statistical_testing.csv (304 competitive mod-

els)

other_data/cell_penetration/whole_data_set/cv_res_statistical_testing.csv (300 com-

petitive models)

A.1.2.3 Cytotoxicity models

other_data/toxicity/neural_network_grid_params.csv

other_data/toxicity/gbm_grid_params.csv

other_data/toxicity/xgboost_grid_params.csv

other_data/toxicity/outer_1/cv_res_statistical_testing.csv (193 competitive models)

other_data/toxicity/outer_2/cv_res_statistical_testing.csv (49 competitive models)

other_data/toxicity/outer_3/cv_res_statistical_testing.csv (194 competitive models)

other_data/toxicity/outer_4/cv_res_statistical_testing.csv (74 competitive models)

other_data/toxicity/outer_5/cv_res_statistical_testing.csv (180 competitive models)

other_data/toxicity/outer_6/cv_res_statistical_testing.csv (197 competitive models)

other_data/toxicity/outer_7/cv_res_statistical_testing.csv (159 competitive models)

other_data/toxicity/outer_8/cv_res_statistical_testing.csv (179 competitive models)

other_data/toxicity/outer_9/cv_res_statistical_testing.csv (163 competitive models)

other_data/toxicity/outer_10/cv_res_statistical_testing.csv (153 competitive models)
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other_data/toxicity/whole_data_set/cv_res_statistical_testing.csv (175 competitive mod-

els)

A.1.3 Adversarial control machine learning cross-validation results

To understand whether the whole machine learning procedure (including model selec-

tion) has learned meaningful relationships in the data sets, adversarial control models were

trained on the data sets with the response variables randomly shuffled, and cross-validation

results were reported for the inner loop iterations. Next, a best-performing model was se-

lected in each inner loop cross-validation, and the generalize performance of these top one

models were estimated in the outer loop cross-validation. There was no final predictive

model trained on the whole data set in this experiment because it is unnecessary to use

adversarial control models for future prediction, and thus there was no whole_data_set

subfolders included. In the file list below, the values in the parentheses following the file

names showed the numbers of competitive models filtered based on the statistical analyses

of the model performance. See subsection A.1.2 for detailed information. The metadata

files containing the grid search model parameters were also included for reference.

A.1.3.1 Melanin binding adversarial control models

other_data/melanin_binding_adversarial/neural_network_grid_params.csv

other_data/melanin_binding_adversarial/gbm_grid_params.csv

other_data/melanin_binding_adversarial/xgboost_grid_params.csv

other_data/melanin_binding_adversarial/outer_1/cv_res_statistical_testing.csv (296 com-

petitive models)
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other_data/melanin_binding_adversarial/outer_2/cv_res_statistical_testing.csv (277 com-

petitive models)

other_data/melanin_binding_adversarial/outer_3/cv_res_statistical_testing.csv (2 com-

petitive models)

other_data/melanin_binding_adversarial/outer_4/cv_res_statistical_testing.csv (118 com-

petitive models)

other_data/melanin_binding_adversarial/outer_5/cv_res_statistical_testing.csv (285 com-

petitive models)

other_data/melanin_binding_adversarial/outer_6/cv_res_statistical_testing.csv (120 com-

petitive models)

other_data/melanin_binding_adversarial/outer_7/cv_res_statistical_testing.csv (86 com-

petitive models)

other_data/melanin_binding_adversarial/outer_8/cv_res_statistical_testing.csv (66 com-

petitive models)

other_data/melanin_binding_adversarial/outer_9/cv_res_statistical_testing.csv (53 com-

petitive models)

other_data/melanin_binding_adversarial/outer_10/cv_res_statistical_testing.csv (146

competitive models)

A.1.3.2 Cell-penetration adversarial control models

other_data/cell_penetration_adversarial/neural_network_grid_params.csv

other_data/cell_penetration_adversarial/gbm_grid_params.csv

other_data/cell_penetration_adversarial/xgboost_grid_params.csv

other_data/cell_penetration_adversarial/outer_1/cv_res_statistical_testing.csv (82 com-

petitive models)
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other_data/cell_penetration_adversarial/outer_2/cv_res_statistical_testing.csv (23 com-

petitive models)

other_data/cell_penetration_adversarial/outer_3/cv_res_statistical_testing.csv (41 com-

petitive models)

other_data/cell_penetration_adversarial/outer_4/cv_res_statistical_testing.csv (24 com-

petitive models)

other_data/cell_penetration_adversarial/outer_5/cv_res_statistical_testing.csv (26 com-

petitive models)

other_data/cell_penetration_adversarial/outer_6/cv_res_statistical_testing.csv (24 com-

petitive models)

other_data/cell_penetration_adversarial/outer_7/cv_res_statistical_testing.csv (28 com-

petitive models)

other_data/cell_penetration_adversarial/outer_8/cv_res_statistical_testing.csv (27 com-

petitive models)

other_data/cell_penetration_adversarial/outer_9/cv_res_statistical_testing.csv (27 com-

petitive models)

other_data/cell_penetration_adversarial/outer_10/cv_res_statistical_testing.csv (34

competitive models)

A.1.3.3 Cytotoxicity adversarial control models

other_data/toxicity_adversarial/neural_network_grid_params.csv

other_data/toxicity_adversarial/gbm_grid_params.csv

other_data/toxicity_adversarial/xgboost_grid_params.csv

other_data/toxicity_adversarial/outer_1/cv_res_statistical_testing.csv (141 competi-

tive models)
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other_data/toxicity_penetration_adversarial/outer_2/cv_res_statistical_testing.csv (126

competitive models)

other_data/toxicity_penetration_adversarial/outer_3/cv_res_statistical_testing.csv (118

competitive models)

other_data/toxicity_penetration_adversarial/outer_4/cv_res_statistical_testing.csv (130

competitive models)

other_data/toxicity_penetration_adversarial/outer_5/cv_res_statistical_testing.csv (80

competitive models)

other_data/toxicity_penetration_adversarial/outer_6/cv_res_statistical_testing.csv (78

competitive models)

other_data/toxicity_penetration_adversarial/outer_7/cv_res_statistical_testing.csv (131

competitive models)

other_data/toxicity_penetration_adversarial/outer_8/cv_res_statistical_testing.csv (131

competitive models)

other_data/toxicity_penetration_adversarial/outer_9/cv_res_statistical_testing.csv (136

competitive models)

other_data/toxicity_penetration_adversarial/outer_10/cv_res_statistical_testing.csv

(127 competitive models)
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A.2 Supplementary Figures

Figure A.1 Characterization of melanin nanoparticles (mNPs) and biotinylated-
melanin nanoparticles (b-mNPs). a Representative transmission electron microscopes (TEM)
images of mNPs and b-mNPs. The scale bar indicates 600 nm. b Relative binding of brimonidine
tartrate and sunitinib malate to mNPs (black dots, n = 3 per drug group) and b-mNPs (gray
squares, n = 3 per drug group). Data are shown as mean ± SD. No significant difference in
relative binding was observed for either drug (Student’s t-tests, two-tailed).
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Figure A.2 Interaction profilings of b-mNPs against peptides in the pilot 119 mi-
croarray. Sparklines showing fluorescence intensities in varying washing buffer conditions (see
Section 2.5), plotted on the same scale in arbitrary unit (arb. unit). The first 16 peptides are
positive control peptides, and the remaining are 103 random peptides.
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Figure A.3 Variable reduction of peptide data sets with random forests. a–c show
performances of random forest models (black dots) trained on variable subsets ranked using
permutation-based variable importance values for melanin binding (a), cell-penetration (b), and
cytotoxicity (c) data sets. Akaike information criterion (AIC), a metric that penalizes complex
models, was calculated for all models. The red dashed lines indicate the number of variables used
in subsequent analyses.
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Figure A.4 Base model coefficients in final super learners. a Cell-penetration. b Cyto-
toxicity (with non-toxic peptides labeled as positive samples). Balanced accuracy is denoted with
color and conveyed as white text on the bars or gray text adjacent bars. Values at the bar ends
indicate base model coefficients. See Sections 2.5 and A.1 for more details regarding base model
hyperparameters.
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Figure A.5 Comparison of melanin binding and cell-penetration of candidate peptides
in non-induced ARPE-19 cells. a, b Cyan triangles denote non-cell-penetrating peptides
(non-CPP), and magenta dots represent cell-penetrating peptides (CPP). The x-axes indicate
melanin binding measured from the mNP assay (n = 4), and the y-axes indicate intracellular
concentration measured from the cell uptake assay with non-induced ARPE-19 cells (n = 3). Black
linear trend lines indicate the Pearson correlation relationships, and the shaded areas convey 95%
confidence intervals. The correlation coefficient and the corresponding p-values (two-tailed) are
shown. c Intracellular concentrations of CPP (n = 113) and non-CPP (n = 14). Box plot
indicates median (middle line), 25th and 75th percentiles (box), and the 1.5 × interquartile range
(whiskers). The p-value was determined using a Mann–Whitney U test (two-tailed).
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Figure A.6 Cytotoxicity model interpretation. Shapley additive explanation (SHAP) values
for the top 20 variables ranked based on the SHAP value range. Dots represent peptides, and
color indicates percentile ranks. The minimum and maximum variable values are listed on the
right.
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Figure A.7 Variable contributions to the prediction of the adversarial models. Top 20
important variables contributing to (a) melanin binding, (b) cell-penetration, and (c) cytotoxicity
adversarial models. The variables were ranked based on the range of the SHAP values. Dots
represent peptide samples. The color gradient shows the values of the corresponding variables,
calculated as percent ranks. The minimum and maximum variables are shown on the right of
each subfigure.
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Figure A.8 Cytotoxicity validation of the HR97 peptide. Cell viability assay of the HR97
peptide. ARPE-19 cells were incubated with varying concentrations of HR97 for 12 h, and the
cell viability was measured with the PrestoBlueTM HS cell viability system at 0.5, 1, 2, 3, 4,
and 5 h after reagent addition (n = 5 per group). Data are presented as mean ± SD. HR97
concentration groups (1.0 mg/mL, cyan; 5.0 mg/mL, purple; 10 mg/mL, yellow; 20 mg/mL,
black) were compared to the control group (magenta) with Student’s t-tests (two-tailed). ∗ denotes
p < 0.05. Adjusted p-values for 10 mg/mL vs. control at hours 0.5, 1, 2, and 3 were respectively
1.36 × 10−3, 8.66 × 10−5, 3.92 × 10−3, and 1.73 × 10−2; and those for 20 mg/mL vs. control at
hours from 0.5 to 5 were 8.66 × 10−5, 6.48 × 10−6, 4.64 × 10−8, 4.64 × 10−8, 4.64 × 10−8, and
4.80 × 10−8, respectively.
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Figure A.9 NMR spectrum of brimonidine. The prep-HPLC retention time (RT) of brimoni-
dine was 5.1 min. The molecular structure of brimonidine is shown in the upper left corner. Peak
location and associated information are 1H NMR (500 MHz, DMSO-d6) 8.84 (d, J = 5 Hz, 1H),
8.68 (d, J = 5 Hz, 1H), 7.83 (d, J = 10Hz, 1H), 7.55 (d, J = 10Hz, 1H) 6.54 (s, 2H), 3.40 (s, 4H).
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Figure A.10 NMR spectrum of Mc-VC-PAB-Cl (Maleimidocaproyl-L-valine-L-
citrulline-p-aminobenzyl chloride). The prep-HPLC RT of Mc-VC-PAB-Cl was 11.4 min. The
molecular structure of Mc-VC-PAB-Cl is shown in the upper left corner. Peak location and asso-
ciated information of Mc-VC-PAB-Cl are 1H NMR (500 MHz, DMSO-d6) 10.03 (s, 1H), 8.08 (d,
J = 7 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 8 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.01
(s, 2H), 5.97 (bs, 1H), 5.41 (vbs, 1H), 4.71 (s, 2H), 4.38 (t, J = 7.5Hz, 1H), 4.18 (dd, J = 1, 8 Hz
1H), 3.06–2.89 (m, 2H), 2.21–2.08 (m, 2H), 1.99–1.92 (m, 1H), 1.75–1.65 (m, 1H), 1.52–1.42(m,
5H), 1.38–1.31 (m, 1H), 1.19 (pen, J = 7.5 Hz, 2H), 0.86 (d, J = 6.5 Hz, 3H) 0.85 (d, J = 7 Hz,
3H).
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Figure A.11 NMR spectrum of Mc-VC-PAB-brimonidine. The prep-HPLC RT of Mc-
VC-PAB-brimonidine was 9.8 min. The molecular structure of Mc-VC-PAB-brimonidine is shown
in the upper left corner. Peak location and associated information are 1H NMR (500 MHz,
DMSO-d6) 9.98 (s, 1H), 9.21 (bs, 1H), 9.11 (d, J = 1.5 Hz, 1H), 9.08 (d, J = 2 Hz, 1H) 9.05 (d,
J = 1.5 Hz, 3H), 8.98 (s, 1H), 8.59 (bs, 5H), 8.15 (s, 1H), 8.12 (d, J = 9 Hz, 5H), 8.07(d, J = 7.5
Hz, 2H), 7.84 (d, J = 9Hz, 4H), 7.81 (d, J = 9 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.60 (dd, J
= 4.5, 8.5 Hz, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 6.53 (s, 3H), 6.40 (dd, J
= 3.5, 27 Hz, 2H), 6.25 (s, 1H), 6.22 (s, 1H), 6.06–6.00 (m, 3H), 5.42 (d, J = 10.5 Hz, 5H), 5.15
(d, J = 14.5 Hz, 2H), 4.81 (d, J = 18.5 Hz, 2H), 4.33 (s, 1H), 4.25 (m, 2H), 4.13–4.07 (m, 2H),
4.01–3.96 (m, 1H), 2.96–2.82 (m, 4H), 2.17–2.03 (m, 4H), 1.87 (dd, J = 6.5 Hz, 2H), 1.64–1.56
(m, 2H), 1.53–1.48 (m, 2H), 1.44–1.36 (m, 4H), 1.32–1.31 (d, J = 6.5 Hz, 4H), 0.76 (d, J = 6.5
Hz, 3H), 0.74 (d, J = 6.5 Hz, 3H).
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Figure A.12 MALDI-TOF spectrum of the HR97-brimonidine conjugate. The molecular
structure of HR97-(quaternary-ammonium-linked)-brimonidine conjugate is shown in the upper
left corner. The m/z calculated for C103H162BN38O20S+ was 2,513.19, and 2,513.55 [M − 5H+ +
5Na+ + K+] was found.
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Figure A.13 Comparison of intraocular pressure (IOP) change from baseline. Line
plot showing the IOP change from baseline (∆IOP) after a single ICM injection of saline (black
dots), HR97 (gray dots, equivalent to the amount of HR97 in HR97-brimonidine conjugate), and a
physical mixture of HR97 and brimonidine tartrate in solution (white dots, HR97 + brimonidine,
200 µg brimonidine equivalent) in normotensive Dutch Belted rabbits (n = 5 per group). The IOP
was measured every 1–2 days post-injection until measured value reached or exceeded baseline,
and again at day 20 post-injection. Data are shown as mean ± SEM.
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A.3 Supplementary Tables

Table A.1 Cross-validation performance (mean ± SEM) of the melanin binding gen-
eral and adversarial control models.

Metric General model Adversarial control
Mean absolute errora 16.812 ± 0.166 32.857 ± 0.173
Root mean squared errora 22.782 ± 0.222 34.344 ± 0.226
Coefficient of determination (R2) 0.543 ± 0.007 -0.038 ± 0.015
aPercent normalized values presented.

Table A.2 Cross-validation performance (mean ± SEM) of the cell-penetration gen-
eral and adversarial control models.

Metric General model Adversarial control
Log loss 0.259 ± 0.017 0.715 ± 0.013
Matthews correlation coefficient 0.794 ± 0.014 -0.002 ± 0.054
F1

a 0.901 ± 0.005 0.522 ± 0.031
Balanced accuracy 0.897 ± 0.007 0.502 ± 0.028
Enrichment factor 2.081 ± 0.065 1.090 ± 0.159
BEDROCb 0.999 ± 0.000 0.529 ± 0.058
aHarmonic mean of precision and recall.
bBoltzmann-enhanced discrimination of receiver operating characteristic.

Table A.3 Cross-validation performance (mean ± SEM) of the cytotoxicity general
and adversarial control models.

Metric General model Adversarial control
Log loss 0.172 ± 0.008 0.654 ± 0.005
Matthews correlation coefficient 0.879 ± 0.004 0.001 ± 0.012
F1

a 0.919 ± 0.002 0.047 ± 0.023
Balanced accuracy 0.947 ± 0.002 0.619 ± 0.035
Enrichment factor 1.519 ± 0.017 0.956 ± 0.057
BEDROCb 0.993 ± 0.005 0.620 ± 0.023
aHarmonic mean of precision and recall.
bBoltzmann-enhanced discrimination of receiver operating characteristic.
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Table A.4 Ocular grading 7 days after a single ICM injection of saline, HR97 (equiva-
lent to the amount of HR97 in HR97-brimonidine conjugate), or a physical mixture of
HR97 and brimonidine tartrate in solution (HR97 + brimonidine, 200 µg brimonidine
equivalent) in Dutch Belted rabbits (n = 5 per group).

Day 7 Saline Peptide Peptide+brimonidine
mixture

Rabbit ID 275 261 262 263 264 265 269 270 271 272 273 274 266 267 268
Pupillary light reflex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival hypermia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (severity) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal vascularization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aqueous flare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior chamber cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Iris involvement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior vitreous cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluorescein staining (severity) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluorescein staining (area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid vascularity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Meibomian gland function 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
All values are zero.
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Table A.5 Ocular grading 14 days after a single ICM injection of saline, HR97 (equiv-
alent to the amount of HR97 in HR97-brimonidine conjugate), or a physical mixture
of HR97 and brimonidine tartrate in solution (HR97 + brimonidine, 200 µg brimoni-
dine equivalent) in Dutch Belted rabbits (n = 5 per group).

Day 14 Saline Peptide Peptide+brimonidine
mixture

Rabbit ID 275 261 262 263 264 265 269 270 271 272 273 274 266 267 268
Pupillary light reflex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival hypermia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (severity) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal vascularization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aqueous flare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior chamber cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Iris involvement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior vitreous cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluorescein staining (severity) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Fluorescein staining (area) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Eyelid discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid vascularity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Meibomian gland function 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
All non-zero values are noted in bold.
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Table A.6 Ocular grading 21 days after a single ICM injection of saline, HR97 (equiv-
alent to the amount of HR97 in HR97-brimonidine conjugate), or a physical mixture
of HR97 and brimonidine tartrate in solution (HR97 + brimonidine, 200 µg brimoni-
dine equivalent) in Dutch Belted rabbits (n = 5 per group).

Day 21 Saline Peptide Peptide+brimonidine
mixture

Rabbit ID 275 261 262 263 264 265 269 270 271 272 273 274 266 267 268
Pupillary light reflex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival hypermia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (severity) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal vascularization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aqueous flare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior chamber cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Iris involvement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior vitreous cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluorescein staining (severity) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Fluorescein staining (area) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Eyelid discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid vascularity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Meibomian gland function 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
All non-zero values are noted in bold.
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Table A.7 Ocular grading 28 days after a single ICM injection of saline, HR97 (equiv-
alent to the amount of HR97 in HR97-brimonidine conjugate), or a physical mixture
of HR97 and brimonidine tartrate in solution (HR97 + brimonidine, 200 µg brimoni-
dine equivalent) in Dutch Belted rabbits (n = 5 per group).

Day 28 Saline Peptide Peptide+brimonidine
mixture

Rabbit ID 275 261 262 263 264 265 269 270 271 272 273 274 266 267 268
Pupillary light reflex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival hypermia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Conjunctival discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (severity) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal opacity (area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corneal vascularization 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aqueous flare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior chamber cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Iris involvement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Anterior vitreous cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluorescein staining (severity) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluorescein staining (area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid discharge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid swelling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eyelid vascularity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Meibomian gland function 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
All values are zero.
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Appendix B: Supplementary Information for Engineered Peptide-Drug Con-

jugate Provides Sustained Protection of Retinal Ganglion

Cells with Topical Administration in Rats

B.1 Supplementary Figures

Figure B.1 Synthesis scheme for HR97-sunitinib. a MC-Val-Cit-PAB-OH was suspended
in DMF and activated with thionyl chloride (SOCl2) at 4 ◦C for 30 minutes. b The purified MC-
Val-Cit-PAB-Cl were then conjugated to sunitinib base in the presence of tetrabutylammonium
iodide (TABI) and N,N-diisopropylethylamine in DMF at room temperature for 24 hours. c HR97
with a terminal cysteine was conjugated to MC-Val-Cit-PAB-sunitinib via the thiol-maleimide
reaction in PBS solution. d The HR97-sunitinib was designed for release of intact parent drug
when triggered by an intracellular chemical and enzymatic event, such as protease cleavage of the
amide bond. Sunitinib is shown in blue.

185



Figure B.2 NMR spectrum of sunitinib base. The prep-HPLC retention time of sunitinib
base was 6.0 min. Peak location and associated information: 1H NMR (500 MHz, DMSO-d6)
13.68 (s, 1H), 10.88 (s, 1H), 7.76 (d, J = 9 Hz, 1H), 7.71 (s, 1H) 7.43 (bs, 1H), 6.92 (t, J = 9 Hz,
1H), 6.85–6.83 (m, 1H), 3.30–3.25 (m, 2H), 2.60–2.52 (m, 6H), 2.41 (d, J = 9.5Hz, 6H), 0.98 (t,
J = 7 Hz, 6H).
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Figure B.3 NMR spectrum of Mc-VC-PAB-Cl. The prep-HPLC retention time of Mc-VC-
PAB-Cl was 10.1 min. Peak location and associated information: 1H NMR (500 MHz, DMSO-d6)
10.03 (s, 1H), 8.08 (d, J = 7 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 8 Hz, 2H), 7.36 (d,
J = 8.5 Hz, 2H), 7.01 (s, 2H), 5.97 (bs, 1H), 5.41(vbs, 1H), 4.71(s, 2H), 4.38 (t, J = 7.5 Hz, 1H),
4.18 (dd, J = 1, 8 Hz 1H), 3.06–2.89 (m, 2H), 2.21–2.08 (m, 2H), 1.99–1.92 (m, 1H), 1.75–1.65
(m, 1H), 1.52–1.42(m, 5H), 1.38–1.31 (m, 1H), 1.19 (pen, J = 7.5 Hz, 2H), 0.86 (d, J = 6.5 Hz,
3H) 0.85 (d, J = 7 Hz, 3H).
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Figure B.4 NMR spectrum of Mc-VC-PAB-sunitinib. The prep-HPLC RT of Mc-VC-
PAB-sunitinib was 8.3 min. Peak location and associated information: 1H NMR (500 MHz,
DMSO-d6) 13.69 (s, 1H), 10.86 (s, 1H), 10.14 (s, 1H), 8.06 (d, J = 5 Hz, 1H), 7.76 (t, J = 6.0
Hz, 1H), 7.72–7.71 (m, 1H), 7.69 (s, 1H), 7.67 (d, J = 3 Hz, 2H), 6.93 (s, 2H), 6.88 (m, 1H),
6.80–6.77 (m, 1H), 6.46 (bs, 2H), 5.92 (t, J = 6 Hz, 1H), 5.34 (s, 2H), 4.45 (s, 2H), 4.32–4.28
(m,1H), 4.11 (dd, J = 7, 8.5 Hz, 1H), 3.67–3.63(m, 2H), 2.98–2.85 (m, 3H), 2.40(s, 3H), 2.38(s,
3H), 2.15–2.01(m, 2H), 1.92–1.85 (m, 1H), 1.68–1.58 (m, 1H), 1.59–1.49 (m, 1H), 1.47–1.37(m,
6H), 1.33(t, J = 7 Hz, 7H), 1.17(s, 5H), 1.144–1.080 (m, 3H), 0.78 (d, J = 7 Hz, 3H), 0.75 (d, J
= 7 Hz, 3H).
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Figure B.5 Molecular structure of HR97-sunitinib conjugate and the MALDI-TOF
spectrum. The molecular structure of HR97-(quaternary-ammonium-linked)-sunitinib con-
jugate is shown in the upper figure. Sunitinib is shown in blue. The m/z calculated for
C114H180FN37O22S+ was 2,470.38, and 2,511.11 [M−H+K]+ was found.
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Figure B.6 HPLC analysis of cathepsin cleavage assay of the HR97-sunitinib conju-
gate. HR97-sunitinib was incubated with human cathepsin cocktails (cathepsin). Peak separation
was visualized for HR97-sunitinib + cathepsin (red line) along with HR97-sunitinib (black line)
and sunitinib (blue line). HPLC was conducted with a Luna® 5 µm C18(2) 100 ÅLC column 250
× 4.6 mm (Phenomenex, Torrance, CA) at 40 ◦C using isocratic flow (1 mL/min 60% TFA 0.1%
in ACN). R.Time denotes retention time.
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Figure B.7 RGC quantification using SSD Mobile-Net. a Classification, localization,
total, and clone loss of training epochs monitored using Tensorboard. b Comparisons between
predicted RGC numbers and counts by masked observers at different epochs. Squared error was
used to evaluate model performance. Data are presented as mean ± SD (n = 200 per group). c
Representative images with high or low RGC density trained in various epochs. Scale bar = 50
µm.
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Figure B.8 RGC quantification using the Faster R-CNN Inception Resnet v2 model.
a Localization, objectness, total, and clone loss of training epochs monitored using Tensorboard.
b Comparisons between predicted RGC numbers and counts by masked observers at different
epochs. Squared error was used to evaluate model performance. Data are presented as mean
± SD (n = 200 per group). c Representative images with high or low RGC density trained in
different epochs. Scale bar = 50 µm.
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Figure B.9 Time course of RGC loss in the rat optic nerve head crush model. a
Schematic showing the approximate locations of where 16 confocal images (40X objective) were
obtained from the flat-mounted retina tissues (n = 6 animals per group). b RGC density quan-
tified by the Faster R-CNN Inception Resnet v2 cell counting program. RGC numbers were
converted to numbers per mm2 tissue area. Data are presented as mean ± SD.
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Appendix C: Supplementary Information for Positive-Unlabeled Learning

Identifies Vaccine Candidate Antigens in the Malaria Para-

site Plasmodium falciparum

C.1 Supplementary Figures
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Sequence Data

featureloc

featureloc_id INT(11)

feature_id INT(11)

srcfeature_id INT(11)

fmin INT(11)

is_fmin_partial INT(11)

fmax INT(11)

is_fmax_partial INT(11)

strand INT(11)

phase INT(11)

residue_info TEXT

locgroup INT(11)

rank INT(11)

Indexes

PRIMARY

feature_id_idx

srcfeature_id_idx

feature

feature_id INT(11)

dbxref_id INT(11)

organism_id INT(11)

name TEXT

uniquename TEXT

residues MEDIUMTEXT

seqlen INT(11)

md5checksum VARCHAR(40)

type_id INT(11)

is_analysis INT(11)

is_obsolete INT(11)

timeaccessioned DATETIME

timelastmodified DATETIME

Indexes

PRIMARY

dbxref_id_idx

organism_id_idx

type_id_idx

featureprop

featureprop_id INT(11)

feature_id INT(11)

type_id INT(11)

value TEXT

rank INT(11)

Indexes

PRIMARY

feature_id_idx

type_id_idx

feature_relationship

feature_relationship_id INT(11)

subject_id INT(11)

object_id INT(11)

type_id INT(11)

value TEXT

rank INT(11)

Indexes

PRIMARY

subject_id_idx

object_id_idx

type_id_idx

Proteomic

maap

id INT(11)

protein_id INT(11)

malarial_adhesin DECIM…

Indexes

PRIMARY

protein_id_UNIQUE

cello

id INT(11)

protein_id INT(11)

extracellular DECIMAL(30,20)

plasma_membrane DECIMAL(…

cytoplasmic DECIMAL(30,20)

cytoskeletal DECIMAL(30,20)

endoplasmic_reticulum DECIM…

golgi DECIMAL(30,20)

lysosomal DECIMAL(30,20)

mitochondrial DECIMAL(30,20)

chloroplast DECIMAL(30,20)

peroxisomal DECIMAL(30,20)

vacuole DECIMAL(30,20)

nuclear DECIMAL(30,20)

location_id INT(11)

Indexes

PRIMARY

location_id_idx

protein_id_UNIQUE

cellular_location

location_id INT(11)

location_name VARCHAR(40)

Indexes

PRIMARY

location_id_UNIQUE

signalp

id INT(11)

protein_id INT(11)

is_secprotein INT(11)

sp_prob DECIMAL(30,20)

cleavage_site INT(11)

cs_probability DECIMAL(…

Indexes

PRIMARY

protein_id_UNIQUE

abpred

id INT(11)

protein_id INT(11)

KmR DECIMAL(30,20)

DmE DECIMAL(30,20)

KpR DECIMAL(30,20)

DpE DECIMAL(30,20)

PmN DECIMAL(30,20)

PpN DECIMAL(30,20)

aro DECIMAL(30,20)

folding_propensity DECIMAL(3…

disorder_propensity DECIMAL(…

beta_propensity DECIMAL(30,20)

kyte_doolittle_hydropathy DEC…

Indexes

PRIMARY

protein_id_idx

r_peptides

id INT(11)

protein_id INT(11)

length INT(11)

weight DECIMAL(30,20)

tiny DECIMAL(30,20)

small DECIMAL(30,20)

aliphatic DECIMAL(30,20)

aromatic DECIMAL(30,20)

9 more...

Indexes

PRIMARY

protein_id_UNIQUE

protr

id INT(11)

protein_id INT(11)

hydrophobicity_Group1 DECIMAL(30,…

hydrophobicity_Group2 DECIMAL(30,…

hydrophobicity_Group3 DECIMAL(30,…

normwaalsvolume_Group1 DECIMAL…

normwaalsvolume_Group2 DECIMAL…

normwaalsvolume_Group3 DECIMAL…

polarity_Group1 DECIMAL(30,20)

polarity_Group2 DECIMAL(30,20)

polarity_Group3 DECIMAL(30,20)

polarizability_Group1 DECIMAL(30,20)

polarizability_Group2 DECIMAL(30,20)

polarizability_Group3 DECIMAL(30,20)

charge_Group1 DECIMAL(30,20)

charge_Group2 DECIMAL(30,20)

28 more...

Indexes

PRIMARY

protein_id_UNIQUE

hydrophilicity

id INT(11)

protein_id INT(11)

max_parker_hydrophilicity DECIMA…

avg_parker_hydrophilicity DECIMAL…

min_parker_hydrophilicity DECIMAL…

Indexes

PRIMARY

protein_id_UNIQUE

glyco_type

glyco_type_id INT(11)

type_name VARCHAR(40)

Indexes

PRIMARY

location_id_UNIQUE

glycoep

id INT(11)

protein_id INT(11)

glyco_type_id INT(11)

position INT(11)

score DECIMAL(30,20)

is_glycosylated INT(11)

Indexes

PRIMARY

protein_id_UNIQUE

glyco_type_id_idx

glycoep_processed

id INT(11)

protein_id INT(11)

number_n_linked_glyco_sites INT(11)

out_number_n_linked_glyco_sites INT(11)

tmh_number_n_linked_glyco_sites INT(11)

in_number_n_linked_glyco_sites INT(11)

max_score_n_linked_glyco_sites DECIMAL…

avg_score_n_linked_glyco_sites DECIMAL(…

min_score_n_linked_glyco_sites DECIMAL(…

out_max_score_n_linked_glyco_sites DECI…

out_avg_score_n_linked_glyco_sites DECI…

out_min_score_n_linked_glyco_sites DECI…

tmh_max_score_n_linked_glyco_sites DECI…

tmh_avg_score_n_linked_glyco_sites DECI…

tmh_min_score_n_linked_glyco_sites DECI…

in_max_score_n_linked_glyco_sites DECIM…

in_avg_score_n_linked_glyco_sites DECIM…

in_min_score_n_linked_glyco_sites DECIM…

16 more...

Indexes

PRIMARY

protein_id_UNIQUE

blastp

id INT(11)

protein_id INT(11)

identity DECIMAL(30,20)

evalue DECIMAL(30,20)

bit_score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_UNIQUE

predgpi

id INT(11)

protein_id INT(11)

gpi_specificity DECIMAL(30,20)

Indexes

PRIMARY

protein_id_UNIQUE

Immunological

bepipred_2_0

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

probability DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

ctlpred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

mhc_restriction TEXT

Indexes

PRIMARY

protein_id_idx

il_10pred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

ifnepitope

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

probability DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

predivac

id INT(11)

protein_id INT(11)

region_id INT(11)

start INT(11)

end INT(11)

cumulative_coverage DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

region_id_idx

geographic_region

region_id INT(11)

region_name VARCHAR(40)

Indexes

PRIMARY

region_name_UNIQUE

predivac_processed

id INT(11)

protein_id INT(11)

number_t_cell_epitopes_asia INT(11)

max_coverage_t_cell_epitopes_asia DEC…

avg_coverage_t_cell_epitopes_asia DECI…

min_coverage_t_cell_epitopes_asia DECI…

36 more...

Indexes

PRIMARY

protein_id_idx

bepipred_1_0

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

probability DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

bepipred_2_0_processed

id INT(11)

protein_id INT(11)

number_b_cell_epitopes_bepipred_2_0 INT(11)

out_number_b_cell_epitopes_bepipred_2_0 INT(11)

tmh_number_b_cell_epitopes_bepipred_2_0 INT(11)

in_number_b_cell_epitopes_bepipred_2_0 INT(11)

max_score_b_cell_epitopes_bepipred_2_0 DECIMA…

out_max_score_b_cell_epitopes_bepipred_2_0 DE…

tmh_max_score_b_cell_epitopes_bepipred_2_0 DE…

in_max_score_b_cell_epitopes_bepipred_2_0 DECI…

avg_score_b_cell_epitopes_bepipred_2_0 DECIMA…

out_avg_score_b_cell_epitopes_bepipred_2_0 DEC…

6 more...

Indexes

PRIMARY

protein_id_idx

bepipred_1_0_processed

id INT(11)

protein_id INT(11)

number_b_cell_epitopes_bepipred_1_0 INT(11)

out_number_b_cell_epitopes_bepipred_1_0 INT(11)

tmh_number_b_cell_epitopes_bepipred_1_0 INT(11)

in_number_b_cell_epitopes_bepipred_1_0 INT(11)

max_score_b_cell_epitopes_bepipred_1_0 DECIMA…

out_max_score_b_cell_epitopes_bepipred_1_0 DEC…

tmh_max_score_b_cell_epitopes_bepipred_1_0 DE…

in_max_score_b_cell_epitopes_bepipred_1_0 DECI…

avg_score_b_cell_epitopes_bepipred_1_0 DECIMAL…

out_avg_score_b_cell_epitopes_bepipred_1_0 DECI…

6 more...

Indexes

PRIMARY

protein_id_idx

abcpred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

abcpred_processed

id INT(11)

protein_id INT(11)

number_b_cell_epitopes_abcpred INT(11)

out_number_b_cell_epitopes_abcpred INT(11)

tmh_number_b_cell_epitopes_abcpred INT(11)

in_number_b_cell_epitopes_abcpred INT(11)

max_score_b_cell_epitopes_abcpred DECIMAL(30,20)

out_max_score_b_cell_epitopes_abcpred DECIMAL…

tmh_max_score_b_cell_epitopes_abcpred DECIMAL…

in_max_score_b_cell_epitopes_abcpred DECIMAL(3…

avg_score_b_cell_epitopes_abcpred DECIMAL(30,20)

out_avg_score_b_cell_epitopes_abcpred DECIMAL(…

6 more...

Indexes

PRIMARY

protein_id_idx

ctlpred_processed

id INT(11)

protein_id INT(11)

number_ctl_epitopes INT(11)

max_score_ctl_epitopes DECIM…

avg_score_ctl_epitopes DECIMA…

min_score_ctl_epitopes DECIMA…

Indexes

PRIMARY

protein_id_idx

il_10pred_processed

id INT(11)

protein_id INT(11)

number_il_10_epitopes INT(11)

max_score_il_10_epitopes DECIMAL(30,20)

avg_score_il_10_epitopes DECIMAL(30,20)

min_score_il_10_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

tappred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

ifnepitope_processed

id INT(11)

protein_id INT(11)

number_ifn_epitopes INT(11)

max_score_ifn_epitopes DECIMAL(30,20)

avg_score_ifn_epitopes DECIMAL(30,20)

min_score_ifn_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

tappred_processed

id INT(11)

protein_id INT(11)

number_tap_high_binding_peptides INT(11)

max_score_tap_high_binding_peptides DECIMAL(30,20)

avg_score_tap_high_binding_peptides DECIMAL(30,20)

min_score_tap_high_binding_peptides DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

mhc_i

id INT(11)

protein_id INT(11)

max_percent_rank_mhc_i_epitopes DECIMAL(30,20)

avg_percent_rank_mhc_i_epitopes DECIMAL(30,20)

min_percent_rank_mhc_i_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

mhc_ii

id INT(11)

protein_id INT(11)

max_percent_rank_mhc_ii_epitopes DECIMAL(30,20)

avg_percent_rank_mhc_ii_epitopes DECIMAL(30,20)

min_percent_rank_mhc_ii_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

antigenicity

id INT(11)

protein_id INT(11)

max_kolaskar_tongaonkar_antigenicity DECIMAL(30,20)

avg_kolaskar_tongaonkar_antigenicity DECIMAL(30,20)

min_kolaskar_tongaonkar_antigenicity DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

immunogenicity

id INT(11)

protein_id INT(11)

max_class_i_immunogenicity DECIMAL(30,20)

avg_class_i_immunogenicity DECIMAL(30,20)

min_class_i_immunogenicity DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

Structural

seg_processed

id INT(11)

protein_id INT(11)

out_overall_complexity DECI…

out_length_low_complexity I…

out_proportion_low_complexi…

tmh_overall_complexity DECI…

tmh_length_low_complexity I…

tmh_proportion_low_complex…

in_overall_complexity DECIM…

in_length_low_complexity IN…

in_proportion_low_complexity…

Indexes

PRIMARY

protein_id_UNIQUE

seg

id INT(11)

protein_id INT(11)

overall_complexity DECIMAL(3…

n_low_complexity INT(11)

length_low_complexity INT(11)

proportion_low_complexity DE…

Indexes

PRIMARY

protein_id_UNIQUE

surface_accessibility

id INT(11)

protein_id INT(11)

max_emini_surface_accessi…

min_emini_surface_accessi…

Indexes

PRIMARY

protein_id_UNIQUE
flexibility

id INT(11)

protein_id INT(11)

max_karplus_schulz_flexibility DE…

avg_karplus_schulz_flexibility DE…

min_karplus_schulz_flexibility DE…

Indexes

PRIMARY

protein_id_UNIQUE

beta_turn

id INT(11)

protein_id INT(11)

max_chou_fasman_beta_turn …

avg_chou_fasman_beta_turn D…

min_chou_fasman_beta_turn D…

Indexes

PRIMARY

protein_id_UNIQUE

tmhmm

id INT(11)

protein_id INT(11)

inside_id INT(11)

tmhelix_id INT(11)

outside_id INT(11)

Indexes

PRIMARY

protein_id_UNIQUE

inside_id_UNIQUE

tmhelix_id_UNIQUE

outside_id_UNIQUE

tmhmm_processed

id INT(11)

protein_id INT(11)

n_tmhs INT(11)

exp_aa DECIMAL(30,20)

first60 DECIMAL(30,20)

n_in_probability DECIMAL(3…

proportion_outside DECIMA…

proportion_inside DECIMAL…

proportion_tmhelix DECIMA…

Indexes

PRIMARY

protein_id_UNIQUE

Basic Information

dbxref

dbxref_id INT(11)

db_id INT(11)

accession VARCHAR(40)

version VARCHAR(40)

description VARCHAR(40)

Indexes

PRIMARY

db_id_idx

cvterm

cvterm_id INT(11)

cv_id INT(11)

name VARCHAR(40)

definition TEXT

dbxref_id INT(11)

is_obsolete INT(11)

is_relationshiptype INT(11)

Indexes

PRIMARY

cv_id_idx

name_UNIQUE

dbxref_id_UNIQUEorganism

organism_id INT(11)

abbreviation TEXT

genus TEXT

species TEXT

common_name TEXT

comment TEXT

Indexes

PRIMARY

species_UNIQUE

db

db_id INT(11)

name VARCHAR(40)

description TEXT

urlprefix TEXT

url TEXT

Indexes

PRIMARY

name_UNIQUE

cv

cv_id INT(11)

name VARCHAR(40)

definition TEXT

Indexes

PRIMARY

name_UNIQUE

Transcriptomic

pf3d7_gene_expression_lasonder

id INT(11)

transcript_id INT(11)

gfp_male DECIMAL(30,20)

mcherry_female DECIMAL(30,20)

gfp_mcherry_male DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_otto

id INT(11)

transcript_id INT(11)

H0 DECIMAL(30,20)

H8 DECIMAL(30,20)

H16 DECIMAL(30,20)

H24 DECIMAL(30,20)

H32 DECIMAL(30,20)

H40 DECIMAL(30,20)

H48 DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_siegel

id INT(11)

transcript_id INT(11)

H10_sense DECIMAL(30,20)

H20_sense DECIMAL(30,20)

H30_sense DECIMAL(30,20)

H40_sense DECIMAL(30,20)

H10_antisense DECIMAL(30,20)

H20_antisense DECIMAL(30,20)

H30_antisense DECIMAL(30,20)

H40_antisense DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_zanghi

id INT(11)

transcript_id INT(11)

sporozoite1 DECIMAL(30,20)

sporozoite2 DECIMAL(30,20)

sporozoite3 DECIMAL(30,20)

sporozoite5 DECIMAL(30,20)

ring1 DECIMAL(30,20)

ring2 DECIMAL(30,20)

oocyst1 DECIMAL(30,20)

oocyst2 DECIMAL(30,20)

oocyst3 DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_young

id INT(11)

transcript_id INT(11)

sporozoite DECIMAL(30,20)

early_ring_s DECIMAL(30,20)

late_ring_s DECIMAL(30,20)

early_troph_s DECIMAL(30,20)

late_troph_s DECIMAL(30,20)

early_schizont_s DECIMAL(30,20)

late_schizont_s DECIMAL(30,20)

merozoite_s DECIMAL(30,20)

early_ring_t DECIMAL(30,20)

late_ring_t DECIMAL(30,20)

early_troph_t DECIMAL(30,20)

late_troph_t DECIMAL(30,20)

early_schizont_t DECIMAL(30,20)

late_schizont_t DECIMAL(30,20)

merozoite_t DECIMAL(30,20)

early_day_1 DECIMAL(30,20)

early_day_2 DECIMAL(30,20)

early_day_3 DECIMAL(30,20)

early_day_4 DECIMAL(30,20)

day_1 DECIMAL(30,20)

day_2 DECIMAL(30,20)

day_3 DECIMAL(30,20)

day_6 DECIMAL(30,20)

day_8 DECIMAL(30,20)

day_12 DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_single_cell_count

id INT(11)

transcript_id INT(11)

X32706_8_5_sorted_bam MEDIUMINT(8)

X32706_8_6_sorted_bam MEDIUMINT(8)

X32706_8_7_sorted_bam MEDIUMINT(8)

X32706_8_8_sorted_bam MEDIUMINT(8)

X32706_8_9_sorted_bam MEDIUMINT(8)

X32706_8_10_sorted_bam MEDIUMINT(8)

X32706_8_11_sorted_bam MEDIUMINT(8)

X32706_8_12_sorted_bam MEDIUMINT(8)

X32706_8_13_sorted_bam MEDIUMINT(8)

X32706_8_14_sorted_bam MEDIUMINT(8)

1806 more ... MEDIUMINT(8)

Indexes

PRIMARY

transcript_id_idx

pf3d7_single_cell_coldata

id INT(11)

sample_id VARCHAR(40)

stage VARCHAR(40)

day VARCHAR(40)

sizeFactor DECIMAL(30,20)

Indexes

PRIMARY

sample_id_idx

Genomic

snp

id INT(11)

protein_id INT(11)

total_snps INT(11)

nonsynonymous_snps INT(11)

synonymous_snps INT(11)

nonsense_snps INT(11)

non_coding_snps INT(11)

nonsyn_syn_snp_ratio DECIMAL(30,20)

snps_per_kb_cds DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

pf3d7_essential_gene

id INT(11)

protein_id INT(11)

gene_identification VARCHAR(40)

mis DECIMAL(30,20)

mfs DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

Functional

go_term

id INT(11)

protein_id INT(11)

biological_process TEXT

molecular_function TEXT

cellular_component TEXT

Indexes

PRIMARY

protein_id_idx

featureloc

featureloc_id INT(11)

feature_id INT(11)

srcfeature_id INT(11)

fmin INT(11)

is_fmin_partial INT(11)

fmax INT(11)

is_fmax_partial INT(11)

strand INT(11)

phase INT(11)

residue_info TEXT

locgroup INT(11)

rank INT(11)

Indexes

PRIMARY

feature_id_idx

srcfeature_id_idx

feature

feature_id INT(11)

dbxref_id INT(11)

organism_id INT(11)

name TEXT

uniquename TEXT

residues MEDIUMTEXT

seqlen INT(11)

md5checksum VARCHAR(40)

type_id INT(11)

is_analysis INT(11)

is_obsolete INT(11)

timeaccessioned DATETIME

timelastmodified DATETIME

Indexes

PRIMARY

dbxref_id_idx

organism_id_idx

type_id_idx

featureprop

featureprop_id INT(11)

feature_id INT(11)

type_id INT(11)

value TEXT

rank INT(11)

Indexes

PRIMARY

feature_id_idx

type_id_idx

feature_relationship

feature_relationship_id INT(11)

subject_id INT(11)

object_id INT(11)

type_id INT(11)

value TEXT

rank INT(11)

Indexes

PRIMARY

subject_id_idx

object_id_idx

type_id_idx

maap

id INT(11)

protein_id INT(11)

malarial_adhesin DECIM…

Indexes

PRIMARY

protein_id_UNIQUE

cello

id INT(11)

protein_id INT(11)

extracellular DECIMAL(30,20)

plasma_membrane DECIMAL(…

cytoplasmic DECIMAL(30,20)

cytoskeletal DECIMAL(30,20)

endoplasmic_reticulum DECIM…

golgi DECIMAL(30,20)

lysosomal DECIMAL(30,20)

mitochondrial DECIMAL(30,20)

chloroplast DECIMAL(30,20)

peroxisomal DECIMAL(30,20)

vacuole DECIMAL(30,20)

nuclear DECIMAL(30,20)

location_id INT(11)

Indexes

PRIMARY

location_id_idx

protein_id_UNIQUE

cellular_location

location_id INT(11)

location_name VARCHAR(40)

Indexes

PRIMARY

location_id_UNIQUE

signalp

id INT(11)

protein_id INT(11)

is_secprotein INT(11)

sp_prob DECIMAL(30,20)

cleavage_site INT(11)

cs_probability DECIMAL(…

Indexes

PRIMARY

protein_id_UNIQUE

abpred

id INT(11)

protein_id INT(11)

KmR DECIMAL(30,20)

DmE DECIMAL(30,20)

KpR DECIMAL(30,20)

DpE DECIMAL(30,20)

PmN DECIMAL(30,20)

PpN DECIMAL(30,20)

aro DECIMAL(30,20)

folding_propensity DECIMAL(3…

disorder_propensity DECIMAL(…

beta_propensity DECIMAL(30,20)

kyte_doolittle_hydropathy DEC…

Indexes

PRIMARY

protein_id_idx

r_peptides

id INT(11)

protein_id INT(11)

length INT(11)

weight DECIMAL(30,20)

tiny DECIMAL(30,20)

small DECIMAL(30,20)

aliphatic DECIMAL(30,20)

aromatic DECIMAL(30,20)

9 more...

Indexes

PRIMARY

protein_id_UNIQUE

protr

id INT(11)

protein_id INT(11)

hydrophobicity_Group1 DECIMAL(30,…

hydrophobicity_Group2 DECIMAL(30,…

hydrophobicity_Group3 DECIMAL(30,…

normwaalsvolume_Group1 DECIMAL…

normwaalsvolume_Group2 DECIMAL…

normwaalsvolume_Group3 DECIMAL…

polarity_Group1 DECIMAL(30,20)

polarity_Group2 DECIMAL(30,20)

polarity_Group3 DECIMAL(30,20)

polarizability_Group1 DECIMAL(30,20)

polarizability_Group2 DECIMAL(30,20)

polarizability_Group3 DECIMAL(30,20)

charge_Group1 DECIMAL(30,20)

charge_Group2 DECIMAL(30,20)

28 more...

Indexes

PRIMARY

protein_id_UNIQUE

hydrophilicity

id INT(11)

protein_id INT(11)

max_parker_hydrophilicity DECIMA…

avg_parker_hydrophilicity DECIMAL…

min_parker_hydrophilicity DECIMAL…

Indexes

PRIMARY

protein_id_UNIQUE

glyco_type

glyco_type_id INT(11)

type_name VARCHAR(40)

Indexes

PRIMARY

location_id_UNIQUE

glycoep

id INT(11)

protein_id INT(11)

glyco_type_id INT(11)

position INT(11)

score DECIMAL(30,20)

is_glycosylated INT(11)

Indexes

PRIMARY

protein_id_UNIQUE

glyco_type_id_idx

glycoep_processed

id INT(11)

protein_id INT(11)

number_n_linked_glyco_sites INT(11)

out_number_n_linked_glyco_sites INT(11)

tmh_number_n_linked_glyco_sites INT(11)

in_number_n_linked_glyco_sites INT(11)

max_score_n_linked_glyco_sites DECIMAL…

avg_score_n_linked_glyco_sites DECIMAL(…

min_score_n_linked_glyco_sites DECIMAL(…

out_max_score_n_linked_glyco_sites DECI…

out_avg_score_n_linked_glyco_sites DECI…

out_min_score_n_linked_glyco_sites DECI…

tmh_max_score_n_linked_glyco_sites DECI…

tmh_avg_score_n_linked_glyco_sites DECI…

tmh_min_score_n_linked_glyco_sites DECI…

in_max_score_n_linked_glyco_sites DECIM…

in_avg_score_n_linked_glyco_sites DECIM…

in_min_score_n_linked_glyco_sites DECIM…

16 more...

Indexes

PRIMARY

protein_id_UNIQUE

blastp

id INT(11)

protein_id INT(11)

identity DECIMAL(30,20)

evalue DECIMAL(30,20)

bit_score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_UNIQUE

predgpi

id INT(11)

protein_id INT(11)

gpi_specificity DECIMAL(30,20)

Indexes

PRIMARY

protein_id_UNIQUE

bepipred_2_0

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

probability DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

ctlpred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

mhc_restriction TEXT

Indexes

PRIMARY

protein_id_idx

il_10pred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

ifnepitope

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

probability DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

predivac

id INT(11)

protein_id INT(11)

region_id INT(11)

start INT(11)

end INT(11)

cumulative_coverage DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

region_id_idx

geographic_region

region_id INT(11)

region_name VARCHAR(40)

Indexes

PRIMARY

region_name_UNIQUE

predivac_processed

id INT(11)

protein_id INT(11)

number_t_cell_epitopes_asia INT(11)

max_coverage_t_cell_epitopes_asia DEC…

avg_coverage_t_cell_epitopes_asia DECI…

min_coverage_t_cell_epitopes_asia DECI…

36 more...

Indexes

PRIMARY

protein_id_idx

bepipred_1_0

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

probability DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

bepipred_2_0_processed

id INT(11)

protein_id INT(11)

number_b_cell_epitopes_bepipred_2_0 INT(11)

out_number_b_cell_epitopes_bepipred_2_0 INT(11)

tmh_number_b_cell_epitopes_bepipred_2_0 INT(11)

in_number_b_cell_epitopes_bepipred_2_0 INT(11)

max_score_b_cell_epitopes_bepipred_2_0 DECIMA…

out_max_score_b_cell_epitopes_bepipred_2_0 DE…

tmh_max_score_b_cell_epitopes_bepipred_2_0 DE…

in_max_score_b_cell_epitopes_bepipred_2_0 DECI…

avg_score_b_cell_epitopes_bepipred_2_0 DECIMA…

out_avg_score_b_cell_epitopes_bepipred_2_0 DEC…

6 more...

Indexes

PRIMARY

protein_id_idx

bepipred_1_0_processed

id INT(11)

protein_id INT(11)

number_b_cell_epitopes_bepipred_1_0 INT(11)

out_number_b_cell_epitopes_bepipred_1_0 INT(11)

tmh_number_b_cell_epitopes_bepipred_1_0 INT(11)

in_number_b_cell_epitopes_bepipred_1_0 INT(11)

max_score_b_cell_epitopes_bepipred_1_0 DECIMA…

out_max_score_b_cell_epitopes_bepipred_1_0 DEC…

tmh_max_score_b_cell_epitopes_bepipred_1_0 DE…

in_max_score_b_cell_epitopes_bepipred_1_0 DECI…

avg_score_b_cell_epitopes_bepipred_1_0 DECIMAL…

out_avg_score_b_cell_epitopes_bepipred_1_0 DECI…

6 more...

Indexes

PRIMARY

protein_id_idx

abcpred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

abcpred_processed

id INT(11)

protein_id INT(11)

number_b_cell_epitopes_abcpred INT(11)

out_number_b_cell_epitopes_abcpred INT(11)

tmh_number_b_cell_epitopes_abcpred INT(11)

in_number_b_cell_epitopes_abcpred INT(11)

max_score_b_cell_epitopes_abcpred DECIMAL(30,20)

out_max_score_b_cell_epitopes_abcpred DECIMAL…

tmh_max_score_b_cell_epitopes_abcpred DECIMAL…

in_max_score_b_cell_epitopes_abcpred DECIMAL(3…

avg_score_b_cell_epitopes_abcpred DECIMAL(30,20)

out_avg_score_b_cell_epitopes_abcpred DECIMAL(…

6 more...

Indexes

PRIMARY

protein_id_idx

ctlpred_processed

id INT(11)

protein_id INT(11)

number_ctl_epitopes INT(11)

max_score_ctl_epitopes DECIM…

avg_score_ctl_epitopes DECIMA…

min_score_ctl_epitopes DECIMA…

Indexes

PRIMARY

protein_id_idx

il_10pred_processed

id INT(11)

protein_id INT(11)

number_il_10_epitopes INT(11)

max_score_il_10_epitopes DECIMAL(30,20)

avg_score_il_10_epitopes DECIMAL(30,20)

min_score_il_10_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

tappred

id INT(11)

protein_id INT(11)

start INT(11)

end INT(11)

score DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

ifnepitope_processed

id INT(11)

protein_id INT(11)

number_ifn_epitopes INT(11)

max_score_ifn_epitopes DECIMAL(30,20)

avg_score_ifn_epitopes DECIMAL(30,20)

min_score_ifn_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

tappred_processed

id INT(11)

protein_id INT(11)

number_tap_high_binding_peptides INT(11)

max_score_tap_high_binding_peptides DECIMAL(30,20)

avg_score_tap_high_binding_peptides DECIMAL(30,20)

min_score_tap_high_binding_peptides DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

mhc_i

id INT(11)

protein_id INT(11)

max_percent_rank_mhc_i_epitopes DECIMAL(30,20)

avg_percent_rank_mhc_i_epitopes DECIMAL(30,20)

min_percent_rank_mhc_i_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

mhc_ii

id INT(11)

protein_id INT(11)

max_percent_rank_mhc_ii_epitopes DECIMAL(30,20)

avg_percent_rank_mhc_ii_epitopes DECIMAL(30,20)

min_percent_rank_mhc_ii_epitopes DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

antigenicity

id INT(11)

protein_id INT(11)

max_kolaskar_tongaonkar_antigenicity DECIMAL(30,20)

avg_kolaskar_tongaonkar_antigenicity DECIMAL(30,20)

min_kolaskar_tongaonkar_antigenicity DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

immunogenicity

id INT(11)

protein_id INT(11)

max_class_i_immunogenicity DECIMAL(30,20)

avg_class_i_immunogenicity DECIMAL(30,20)

min_class_i_immunogenicity DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

seg_processed

id INT(11)

protein_id INT(11)

out_overall_complexity DECI…

out_length_low_complexity I…

out_proportion_low_complexi…

tmh_overall_complexity DECI…

tmh_length_low_complexity I…

tmh_proportion_low_complex…

in_overall_complexity DECIM…

in_length_low_complexity IN…

in_proportion_low_complexity…

Indexes

PRIMARY

protein_id_UNIQUE

seg

id INT(11)

protein_id INT(11)

overall_complexity DECIMAL(3…

n_low_complexity INT(11)

length_low_complexity INT(11)

proportion_low_complexity DE…

Indexes

PRIMARY

protein_id_UNIQUE

surface_accessibility

id INT(11)

protein_id INT(11)

max_emini_surface_accessi…

min_emini_surface_accessi…

Indexes

PRIMARY

protein_id_UNIQUE
flexibility

id INT(11)

protein_id INT(11)

max_karplus_schulz_flexibility DE…

avg_karplus_schulz_flexibility DE…

min_karplus_schulz_flexibility DE…

Indexes

PRIMARY

protein_id_UNIQUE

beta_turn

id INT(11)

protein_id INT(11)

max_chou_fasman_beta_turn …

avg_chou_fasman_beta_turn D…

min_chou_fasman_beta_turn D…

Indexes

PRIMARY

protein_id_UNIQUE

tmhmm

id INT(11)

protein_id INT(11)

inside_id INT(11)

tmhelix_id INT(11)

outside_id INT(11)

Indexes

PRIMARY

protein_id_UNIQUE

inside_id_UNIQUE

tmhelix_id_UNIQUE

outside_id_UNIQUE

tmhmm_processed

id INT(11)

protein_id INT(11)

n_tmhs INT(11)

exp_aa DECIMAL(30,20)

first60 DECIMAL(30,20)

n_in_probability DECIMAL(3…

proportion_outside DECIMA…

proportion_inside DECIMAL…

proportion_tmhelix DECIMA…

Indexes

PRIMARY

protein_id_UNIQUE

dbxref

dbxref_id INT(11)

db_id INT(11)

accession VARCHAR(40)

version VARCHAR(40)

description VARCHAR(40)

Indexes

PRIMARY

db_id_idx

cvterm

cvterm_id INT(11)

cv_id INT(11)

name VARCHAR(40)

definition TEXT

dbxref_id INT(11)

is_obsolete INT(11)

is_relationshiptype INT(11)

Indexes

PRIMARY

cv_id_idx

name_UNIQUE

dbxref_id_UNIQUEorganism

organism_id INT(11)

abbreviation TEXT

genus TEXT

species TEXT

common_name TEXT

comment TEXT

Indexes

PRIMARY

species_UNIQUE

db

db_id INT(11)

name VARCHAR(40)

description TEXT

urlprefix TEXT

url TEXT

Indexes

PRIMARY

name_UNIQUE

cv

cv_id INT(11)

name VARCHAR(40)

definition TEXT

Indexes

PRIMARY

name_UNIQUE

pf3d7_gene_expression_lasonder

id INT(11)

transcript_id INT(11)

gfp_male DECIMAL(30,20)

mcherry_female DECIMAL(30,20)

gfp_mcherry_male DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_otto

id INT(11)

transcript_id INT(11)

H0 DECIMAL(30,20)

H8 DECIMAL(30,20)

H16 DECIMAL(30,20)

H24 DECIMAL(30,20)

H32 DECIMAL(30,20)

H40 DECIMAL(30,20)

H48 DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_siegel

id INT(11)

transcript_id INT(11)

H10_sense DECIMAL(30,20)

H20_sense DECIMAL(30,20)

H30_sense DECIMAL(30,20)

H40_sense DECIMAL(30,20)

H10_antisense DECIMAL(30,20)

H20_antisense DECIMAL(30,20)

H30_antisense DECIMAL(30,20)

H40_antisense DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_zanghi

id INT(11)

transcript_id INT(11)

sporozoite1 DECIMAL(30,20)

sporozoite2 DECIMAL(30,20)

sporozoite3 DECIMAL(30,20)

sporozoite5 DECIMAL(30,20)

ring1 DECIMAL(30,20)

ring2 DECIMAL(30,20)

oocyst1 DECIMAL(30,20)

oocyst2 DECIMAL(30,20)

oocyst3 DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_gene_expression_young

id INT(11)

transcript_id INT(11)

sporozoite DECIMAL(30,20)

early_ring_s DECIMAL(30,20)

late_ring_s DECIMAL(30,20)

early_troph_s DECIMAL(30,20)

late_troph_s DECIMAL(30,20)

early_schizont_s DECIMAL(30,20)

late_schizont_s DECIMAL(30,20)

merozoite_s DECIMAL(30,20)

early_ring_t DECIMAL(30,20)

late_ring_t DECIMAL(30,20)

early_troph_t DECIMAL(30,20)

late_troph_t DECIMAL(30,20)

early_schizont_t DECIMAL(30,20)

late_schizont_t DECIMAL(30,20)

merozoite_t DECIMAL(30,20)

early_day_1 DECIMAL(30,20)

early_day_2 DECIMAL(30,20)

early_day_3 DECIMAL(30,20)

early_day_4 DECIMAL(30,20)

day_1 DECIMAL(30,20)

day_2 DECIMAL(30,20)

day_3 DECIMAL(30,20)

day_6 DECIMAL(30,20)

day_8 DECIMAL(30,20)

day_12 DECIMAL(30,20)

Indexes

PRIMARY

transcript_id_idx

pf3d7_single_cell_count

id INT(11)

transcript_id INT(11)

X32706_8_5_sorted_bam MEDIUMINT(8)

X32706_8_6_sorted_bam MEDIUMINT(8)

X32706_8_7_sorted_bam MEDIUMINT(8)

X32706_8_8_sorted_bam MEDIUMINT(8)

X32706_8_9_sorted_bam MEDIUMINT(8)

X32706_8_10_sorted_bam MEDIUMINT(8)

X32706_8_11_sorted_bam MEDIUMINT(8)

X32706_8_12_sorted_bam MEDIUMINT(8)

X32706_8_13_sorted_bam MEDIUMINT(8)

X32706_8_14_sorted_bam MEDIUMINT(8)

1806 more ... MEDIUMINT(8)

Indexes

PRIMARY

transcript_id_idx

pf3d7_single_cell_coldata

id INT(11)

sample_id VARCHAR(40)

stage VARCHAR(40)

day VARCHAR(40)

sizeFactor DECIMAL(30,20)

Indexes

PRIMARY

sample_id_idx

snp

id INT(11)

protein_id INT(11)

total_snps INT(11)

nonsynonymous_snps INT(11)

synonymous_snps INT(11)

nonsense_snps INT(11)

non_coding_snps INT(11)

nonsyn_syn_snp_ratio DECIMAL(30,20)

snps_per_kb_cds DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

pf3d7_essential_gene

id INT(11)

protein_id INT(11)

gene_identification VARCHAR(40)

mis DECIMAL(30,20)

mfs DECIMAL(30,20)

Indexes

PRIMARY

protein_id_idx

go_term

id INT(11)

protein_id INT(11)

biological_process TEXT

molecular_function TEXT

cellular_component TEXT

Indexes

PRIMARY

protein_id_idx

Figure C.1 Database schema of P. falciparum reverse vaccinology data. Data ta-
bles were grouped based on data properties and shown in different colors (light blue: pro-
teomic; orange: sequence data; purple: basic information; yellow: structural; green: immunological;
pink: transcriptomic; dark blue: genomic). Lines indicate relationship between data tables. Each
table shows the variables stored and their corresponding data types in the database context. Data
tables used to assemble the input data set used in the study are shown in grey.
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Figure C.2 Evaluation of model performance on simulated data set. a Lines represent
receiver operating characteristic (ROC) curves estimated from the prediction score distribution
(red), as well as computed regarding true labels and positive-unlabeled (PU) labels (blue and
light green, respectively). The areas under the receiver operating characteristic curve (AUROC;
mean ± SEM; n = 5) are noted in the parentheses in the legend. b Barplots showing the AUROC
of ROC curves in a. Error bars indicate standard errors. Mann–Whitney test (two-sided) was
performed, and the adjusted p values are shown on the top of the bars.
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Figure C.3 Hyper-parameter tuning before variable space weighting. Subplots show
prediction score distributions of the unlabeled proteins. The putative positive (red) and negative
(blue) groups were computed using a two-component Gaussian mixture model. Receiver operating
characteristic (ROC) curves were calculated based on the estimated distribution groups, and the
areas under the receiver operating characteristic curves (AUROC) are indicated in the parentheses
in the subplot titles.

197



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

Score (proportion of votes)

Positive level = 0.1 (AUC = 0.83)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.2 (AUC = 0.82)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.3 (AUC = 0.82)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.4 (AUC = 0.82)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.5 (AUC = 0.81)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.6 (AUC = 0.8)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.7 (AUC = 0.78)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.8 (AUC = 0.76)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Positive level = 0.9 (AUC = 0.73)

Ranked known antigens (scaled)

P
er

ce
nt

 r
an

k

Figure C.4 Evaluation of known antigen predictions before variable space weighting.
known antigens (n = 52) and unlabeled proteins were ranked based on probability scores from
ensembles with different positive levels (0.1–0.9; shown as subplots). The x-axes show scaled
ranks of known antigens, and the y-axes indicate precentile rank of known antigens among all
P. falciparum proteins. Gradient colors represent prediction scores. Dashed lines indicated per-
centile ranks of 0.5. The areas under the ranking curves (AUC) are shown in the parenthesis in
the subplot titles.
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Figure C.5 Hyper-parameter tuning after variable space weighting. Probability score
distributions of unlabeled proteins predicted by ensembles with different positive levels are shown
in subplots. Score distributions were fitted using a two-component Gaussian mixture model to
estimate the putative positive (red) and negative (blue) groups. Receiver operating characteristic
curves (ROC) were calculated from the estimated distributions. The areas under the receiver
operating characteristic curves (AUROC) are noted in the parentheses following the subplot titles.
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Figure C.6 Evaluation of known antigen predictions after variable space weighting.
Dots in the subplots represent known antigens (n = 52). The x-axes show scaled ranks of known
antigens only. The y-axes represent percentile ranks of known antigens among all P. falciparum
proteins. Probability scores are noted by gradient colors. Dashed lines show 0.5 percent ranks,
and the areas under the curves (AUC) are shown in the subplot title parentheses.
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Figure C.7 Comparison of mean differences in probability scores after known antigen
label removal. Labels of known antigens were removed iteratively, and the mean differences in
scores for the remaining known antigens were calculated. The validation procedure was performed
for ensembles with (red points, n = 48) and without (yellow points, n = 48) tree filtering. The
box plots indicate medians with first and third quartiles. The lower and upper whiskers show 1.5
times the interquartile range extended from the first and third quartiles, respectively. The grey
lines connect the same label removal iteration in both distributions. The dashed line shows a zero-
mean difference in scores. The p-value was calculated using a pairwise two-sided Mann–Whitney
test.
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Figure C.8 Probability scores of candidate antigen groups. Comparison of scores pre-
dicted by non-tree-filtered (yellow points) and tree-filtered (red points) models for the three can-
didate groups (samples sizes: 61, 83, and 56). Points represent candidate antigens. Boxplots show
the medians with the first and third quartiles. The lower and upper whiskers indicate 1.5 times the
interquartile range extended from the first and third quartiles, respectively. Grey lines connect
pairs of the same candidate antigens in the group, and adjusted p-values from two-sided pairwise
Mann–Whitney tests are noted.
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Figure C.9 Statistical comparisons of distances between candidate and reference anti-
gens. Euclidean distances (ranging from 0–1) were calculated from the proximity matrix from
the tree-based models. The summaries of distances of candidate antigens to the reference anti-
gens CSP, RH5 MSP5, and P230 are shown in a, b, c, and d, respectively. For each plot, the
left three panels show comparisons (two-sided pairwise Mann–Whitney test; p-values adjusted
using the Benjamini–Hochberg procedure) of distances computed from the non-tree-filtered (yel-
low points) and tree-filtered (red points) models. The rightmost panel shows the comparisons
(two-sided Mann–Whitney test with p-values adjusted) of distance differences between the three
candidate antigen groups before and after tree filtering. Points represent candidate antigens. The
corresponding p-values are noted above the compared groups. Dashed lines in the left and right
panels indicate 0.5 distance and 0 difference in distances, respectively.
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p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19p = 3.9 × 10−19

p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19p = 4.5 × 10−19

p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16p = 5.6 × 10−16

p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17p = 8.2 × 10−17

p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19p = 5.6 × 10−19

Number non−synonymous SNPs

Maximum score of Karplus and Schulz flexibility

Maximum score of Parker hydrophilicity

% positive charge a.a. − % negative charge a.a.

Mitochondrial

Average score of Parker hydrophilicity

% hydrophobicity amino acids

Total number of SNPs

Minimum score of IFN−gamma inducing epitopes

Isoelectric point (PI) value

0.00 0.25 0.50 0.75 1.00
Normalized variable value

Group 1 (61 candidates)

p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18p = 6.6 × 10−18

p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17p = 3.6 × 10−17

p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17p = 4.3 × 10−17

p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17p = 7.3 × 10−17

p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18p = 4.6 × 10−18

p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6p = 1.1 × 10−6

p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8p = 8.3 × 10−8

p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15p = 1.9 × 10−15

p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19p = 7.3 × 10−19

p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7p = 1.8 × 10−7

Number B−cell epitopes in outer membrane regions

Maximum score of Parker hydrophilicity

Maximum score of Karplus and Schulz flexibility

Number non−synonymous SNPs

% hydrophobicity amino acids

Cytoskeletal

Mitochondrial

% positive charge a.a. − % negative charge a.a.

Average score of Parker hydrophilicity

Minimum score of Parker hydrophilicity

0.00 0.25 0.50 0.75 1.00
Normalized variable value

Group 3 (56 candidates)

p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26p = 9.2 × 10−26

p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25p = 4.9 × 10−25

p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23p = 2.8 × 10−23

p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24p = 4.1 × 10−24

p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27p = 8.2 × 10−27
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Figure C.10 Statistical comparisons of variable values of top important variables be-
tween the candidate antigen groups and randomly selected non-antigens. Top ten im-
portant variables analyzed using permutation-based variable importance based on the candidates
in each group are shown (see also Tables C.1–C.3). For each candidate antigen group, the variable
values were compared with a same number of randomly selected non-antigens predicted (prob-
ability score <0.5) using a two-sided Mann–Whitney test adjusted by the Benjamini-Hochberg
procedure. The x-axes show normalized variable values based on the whole data set. Red dots
and blue dots indicate candidates and predicted non-antigens, respectively. Boxplots display the
first quartile, median, and third quartile values. The left and right whiskers indicate 1.5 times the
interquartile range extended from the first and third quartiles, respectively.
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Figure C.11 Candidate antigen characterization across various P. falciparum life
stages. Normalized gene counts of cells in each stage for the four reference antigens and the
filtered candidate antigens with single-cell transcriptomic data from the Malaria Cell Atlas [203–
205] are shown. Dot size represents proportion of cells having gene count larger than zero. Gradient
colors indicate median count of the cell population in each life stage. The numbers of antigens in
each candidate antigen group are noted in the parentheses in the subplot titles.
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C.2 Supplementary Tables

Table C.1 Top important variables (upper part) and variable categories (lower part)
in group 1 candidate antigens. Ranks in groups 2 and 3 individual variable and
variable category importance are also shown (MDA: Mean Decrease Accuracy).

# Variable MDA Group 2
rank

Group 3
rank Group

1 Number non-synonymous SNPs 46.94 2 4 Genomic
2 Maximum score of Karplus and Schulz flexibility 46.52 3 3 Structural
3 Maximum score of Parker hydrophilicity 39.88 1 2 Proteomic
4 % positive charge a.a. − % negative charge a.a. 35.75 8 8 Proteomic
5 Mitochondrial 35.42 5 7 Proteomic
6 Average score of Parker hydrophilicity 35.29 10 9 Proteomic
7 % hydrophobicity amino acids 32.59 6 5 Proteomic
8 Total number of SNPs 32.34 9 12 Genomic
9 Minimum score of IFN-γ inducing epitopes 30.07 7 11 Immunological
10 Isoelectric point (PI) value 29.31 21 15 Proteomic

# Group variable MDA Group 1
rank

Group 2
rank

1 Proteomic group variables 174.69 1 1
2 Immunological group variables 106.54 2 2
3 Structural group variables 64.64 3 3
4 Genomic group variables 58.52 4 4
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Table C.2 Top important variables (upper part) and variable categories (lower part)
in group 2 candidate antigens. Ranks in groups 1 and 3 variable and variable category
importance are also shown (MDA: Mean Decrease Accuracy).

# Variable MDA Group 1
rank

Group 3
rank Group

1 Maximum score of Parker hydrophilicity 52.05 3 2 Proteomic
2 Number non-synonymous SNPs 51.85 1 4 Genomic
3 Maximum score of Karplus and Schulz flexibility 51.45 2 3 Structural
4 Cytoskeletal 43.65 11 6 Proteomic
5 Mitochondrial 41.69 5 7 Proteomic
6 % hydrophobicity amino acids 40.30 7 5 Proteomic
7 Minimum score of IFN-γ inducing epitopes 38.95 9 11 Immunological
8 % positive charge a.a. − % negative charge a.a. 38.20 4 8 Proteomic
9 Total number of SNPs 38.01 8 12 Genomic
10 Average score of Parker hydrophilicity 35.37 6 9 Proteomic

# Group variable MDA Group 1
rank

Group 2
rank

1 Proteomic group variables 195.21 1 1
2 Immunological group variables 124.44 2 2
3 Structural group variables 76.17 3 3
4 Genomic group variables 73.78 4 4
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Table C.3 Top important variables (upper part) and variable categories (lower part)
in group 3 candidate antigens. Ranks in groups 1 and 2 variable and variable category
importance are also shown (MDA: Mean Decrease Accuracy).

# Variable MDA Group 1
rank

Group 2
rank Group

1 Number B-cell epitopes in outer membrane regions 59.60 272 272 Immunological
2 Maximum score of Parker hydrophilicity 50.61 3 1 Proteomic
3 Maximum score of Karplus and Schulz flexibility 47.96 2 3 Structural
4 Number non-synonymous SNPs 43.77 1 2 Genomic
5 % hydrophobicity amino acids 41.91 7 6 Proteomic
6 Cytoskeletal 41.48 11 4 Proteomic
7 Mitochondrial 38.95 5 5 Proteomic
8 % positive charge a.a. − % negative charge a.a. 37.23 4 8 Proteomic
9 Average score of Parker hydrophilicity 36.71 6 10 Proteomic
10 Minimum score of Parker hydrophilicity 36.46 257 11 Proteomic

# Group variable MDA Group 1
rank

Group 2
rank

1 Proteomic group variables 177.86 1 1
2 Immunological group variables 157.07 2 2
3 Structural group variables 88.26 3 3
4 Genomic group variables 62.82 4 4
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Appendix D: Supplementary Information for Plasmodium vivax Antigen

Candidate Prediction Improves with the Addition of Plas-

modium falciparum Data

D.1 Supplementary Figures
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Figure D.1 Hyper-parameter tuning for PURF model trained on the P. vivax data
set. Subplots showing probability score (proportion of votes) distributions of unlabeled proteins
predicted by P. vivax models trained on different positive level (model hyper-parameter) settings
ranging from 0.1 to 0.9. Magenta indicates putative positive distribution and blue represents
putative negative distribution computed from a two-component Gaussian mixture model. Receiver
operating characteristic (ROC) curves were computed based on the estimated distributions. The
areas under the receiver operating characteristic curves (AUROC) are noted in the subplot titles.
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Figure D.2 Evaluation of known antigen predictions of the P. vivax model. Subplots
of known antigen predictions from P. vivax models trained with different positive level (model
hyper-parameter) settings, ranging from 0.1 to 0.9. Dots represent the 38 P. vivax known antigens,
and the x-axes show the scaled ranks of these known antigens. The percentile ranks (the higher the
better) calculated across all P. vivax proteins are indicated by the y-axes. The grey dashed lines
show the percentile rank of 0.5, and the gradient colors represent probability scores (proportion of
votes), with darker magenta color showing higher scores and darker blue showing lower scores. The
areas under the curves (AUC) are noted in the subplot titles.
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Figure D.3 Hyper-parameter tuning for PURF model trained on the combined data
set. Subplots displaying distributions of probability scores (proportion of votes) of unlabeled pro-
teins predicted by combined models trained on varying positive levels (hyper-parameters). The
score distributions were modeled using a two-component Gaussian mixture to estimate the puta-
tive positive (magenta) and negative (blue) distributions. Receiver operating characteristic curves
(ROC) were generated based on these estimated distributions. The areas under the receiver op-
erating characteristic curves (AUROC) are indicated in the subplot titles.
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Figure D.4 Evaluation of known antigen predictions of the combined model. The
subplots show percentile ranks of known antigen predictions of combined models trained with
different positive level (model hyper-parameter) settings from 0.1 to 0.9. The x-axes show scaled
ranks of the 90 known antigens from both Plasmodium species, and the y-axes indicate percentile
ranks (the higher the better) of the known antigens across all proteins from both species. The grey
dashed lines show the percentile rank of 0.5. Gradient colors convey probability scores (proportion
of votes), with higher scores represented by darker magenta color and lower scores by darker blue
color. The areas under the curves (AUC) are noted in the subplot titles.

213



P. vivax model

P. falciparum model

Combined model

−0.10 −0.05 0.00 0.05
Mean difference in scores (proportion of votes)

Figure D.5 Validation of PURF models. Mean differences in probability scores (proportion
of votes) of the known antigens after removing the label of one of the known antigens in the input
data sets for training the P. vivax (blue), P. falciparum (purple), and combined (orange) models.
Boxplots show the median with first and third quartiles, and the whiskers display the extension
of the 1.5 interquartile range from the first and third quartiles. The grey dashed line indicates
zero mean difference in scores.
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Figure D.6 Evaluation of known antigen predictions of PURF models. Line plots
showing the percentile ranks of known antigens in the sets of P. vivax (a) and P. falciparum
(b) proteins. Dots represent known antigens, which are connected by lines indicating antigen
predictions from PURF models trained on different combinations of autologous and heterologous
data. The x-axis shows the scaled ranks of the known antigens only, and the y-axis indicates the
percentile ranks (the higher the better) of the known antigens across the entire P. vivax (a) or
P. falciparum (b) data sets. The areas under the curves (AUC) are noted in the legend text. The
grey horizontal dashed lines indicate the percentile rank of 0.5.
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Figure D.7 Relationship between proportion of labeled positives in the data set and
mean tree depth in the PURF model. The x-axis is logit-transformed and indicates the
proportion of labeled positives in the data set. The y-axis is log2-transformed and shows the mean
depth across all trees in the PURF model. Dots represent PURF models (n = 7) with different
combinations of autologous and heterologous data, and the model names are noted. Data are
shown as mean ± SD. The grey dashed trend line conveys the linear regression model, where the
formula and adjusted R2 are indicated on the upper left corner. The p-value associated with the
F -statistic of the linear regression is 0.012.
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Figure D.8 Visualization of hierarchical clustering dendrogram investigation. Uniform
manifold approximation and projection (UAMP) plots showing the iterative investigation of the
dendrogram computed from the Euclidean distance matrix of predicted antigens derived from the
combined PURF model. a The dendrogram was first cut into two groups, where the purple dots
and pink dots show group 1 and group 2 predicted antigens, respectively. b Group 1 from (a) with
a higher mean probability score was further divided into two groups, where purple and green dots
indicate the new group 1 and group 2 predicted antigens, respectively. c The iteration continued
and group 2 from (b) was selected because of the higher mean probability score, and further
divided into another two groups separately represented by green and orange dots. d Group 1 from
(c) was selected and another two groups of predicted antigens were generated based on the sub-
dendrogram structure. The respective dot colors for the new group 1 and group 2 are orange and
purple. Yellow dots are known antigens from both Plamodium species and the reference antigens
are noted by text. Grey dots represent other unlabeled proteins.
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Figure D.9 Variable importance for the P. vivax model. a Top 10 important variables
are shown on the left panel and categorized into genomic (dark blue), immunological (green),
proteomic (blue), and structural (amber) variables. The x-axis indicate importance values in terms
of mean decrease in prediction accuracy (scaled by the standard error) of the known antigens after
variable permutation. The right panel displays comparisons of normalized variables values between
the 38 known antigens (magenta dots) and the same number of randomly selected predicted non-
antigens (blue dots). Boxplots show median with first and third quartiles, and the whiskers are
the 1.5 interquartile range extended from the first and third quartiles. Two sided Mann–Whitney
tests were computed, and the p-values were adjusted using the Benjamini–Hochberg procedure
and noted on the right of the panel. b The importance of grouped variables by data types, where
variables in the same variable data type were permuted together to calculate the mean decrease
in accuracy of the known antigens.
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Figure D.10 Comparison of variable importance values between PURF models. Top
10 important variables were identified from the combined models, and the corresponding variable
importance values are presented and compared for the combined, P. vivax, and P. falciparum
model. Variable names are noted by text. The grey diagonal lines indicate where the importance
values from both compared models are the same.
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Figure D.11 Clustering analysis of top candidate antigens. Hierarchical clustering was
performed on the top candidate Euclidean distance matrix derived from the combined PURF
model. The dendrogram was cut into two (a) and three (b) groups and visualized on uniform
manifold approximation and projection (UMAP) plots computed from the Euclidean distance
matrix of the combined P. vivax and P. falciparum proteomes. a Blue and purple dots respectively
represent group 1 and group 2 candidate antigens when cutting the dendrogram into two groups. b
Blue, purple, and orange dots show group 1, group 2, and group 3 candidate antigens, respectively,
when generating three groups from the dendrogram. Yellow dots are known antigens from both
Plasmodium species with protein names of reference antigens annotated. Grey dots are other
unlabeled proteins from both species.
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Figure D.12 Gene ontology (GO) enrichment analysis of candidate antigen groups.
Plots showing enriched GO terms for group 1 (a), group 2 (b), and group 3 (c) candidate antigen
genes, compared to the combined background proteomes of P. vivax and P. falciparum. GO terms
with false discovery rate (FDR) <0.05 are shown on the y-axes and categorized into biological
process, cellular component, and molecular function. The x-axes show log10FDR, which are indi-
cated by the grey bars of the corresponding GO terms. The values in the black dots indicate the
number of antigen genes associated with the GO terms.
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D.2 Supplementary Tables

Table D.1 Associations between Plasmodium species and antigen predictions from
models trained on different combinations of autologous and heterologous data (CI:
confidence interval).

PURF model Cramér’s V χ2 test p-value
Combined 0.08 (95% CI: 0.06, 0.10) 4.95 × 10−19

P. vivax 0.10 (95% CI: 0.08, 0.12) 3.52 × 10−28

P. falciparum 0.06 (95% CI: 0.04, 0.08) 7.08 × 10−12

P. vivax with heterologous positives 0.61 (95% CI: 0.60, 0.62) ∼ 0
P. falciparum with heterologous positives 0.62 (95% CI: 0.60, 0.63) ∼ 0
P. vivax with heterologous unlabeled 0.80 (95% CI: 0.79, 0.81) ∼ 0
P. falciparum with heterologous unlabeled 0.96 (95% CI: 0.95, 0.96) ∼ 0
p-values < 2.225074 × 10−308 are reported as ∼ 0.
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