Code
MODEL_NAME = 'Rat40XFasterRCNN' #@param ['Rat40XFasterRCNN']This is an archived notebook of the cell counting program developed using Faster R-CNN with Inception Resnet v2 object detection model for the paper “Engineered peptide-drug conjugate provides sustained protection of retinal ganglion cells with topical administration in rats.” The model framework was obtained from the TensorFlow Model Garden (Hongkun Yu and Li 2020).
MODEL_NAME = 'Rat40XFasterRCNN' #@param ['Rat40XFasterRCNN']from google.colab import drive
drive.mount('/content/gdrive', force_remount=True)
%cd /content/gdrive/My Drive/RGC_quantifier_DoNotTouch_Copyimport tensorflow.compat.v1 as tf
tf.disable_v2_behavior!pip install progressbar2
import os
import pathlib
if "models" in pathlib.Path.cwd().parts:
while "models" in pathlib.Path.cwd().parts:
os.chdir('..')
elif not pathlib.Path('models').exists():
!git clone --depth 1 https://github.com/tensorflow/models
%cd models/research/
!protoc object_detection/protos/*.proto --python_out=.
!pip install .
%cd /content/gdrive/My Drive/RGC_quantifier_DoNotTouch_Copy!pip install tf_slimimport pandas as pd
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
# import tensorflow as tf
import zipfile
from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
import progressbar
from datetime import datetime
MODEL_PATH = 'source_code/' + MODEL_NAME + '_inference_graph/frozen_inference_graph.pb'
LABEL_PATH = 'source_code/' + MODEL_NAME + '_inference_graph/object-detection.pbtxt'
IMAGE_DIR = 'RGC_images'
RESULT_DIR = 'results'
NUM_CLASSES = 1
JPG_IMGS = os.listdir(IMAGE_DIR)
IMAGE_PATHS = [os.path.join(IMAGE_DIR, img) for img in JPG_IMGS if img.endswith('.jpg')]
IMAGE_SIZE = (12, 8) # size of output images
COUNTING_RES = list()
# functions
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
def detect_objects(image_path):
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8,
max_boxes_to_draw=None)
# Plot the image result
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
plt.savefig(os.path.join(RESULT_DIR, image_path.split('/')[1]))
COUNTING_RES.append({'file_name': image_path.split('/')[1], 'counts': sum(output_dict['detection_scores'] > 0.5)})
# load frozen model
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(MODEL_PATH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# load label map
category_index = label_map_util.create_category_index_from_labelmap(LABEL_PATH, use_display_name=True)for i in progressbar.progressbar(range(0, len(IMAGE_PATHS))): # detect objects
detect_objects(IMAGE_PATHS[i])
pd.DataFrame(COUNTING_RES).to_csv(RESULT_DIR + '/counting_result.tsv', sep='\t', index=False) # output counting result
print('DONE! (' + datetime.now().strftime("%m/%d/%Y") + '; model: ' + MODEL_NAME + ')')

The notebook is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.