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Machine learning-driven multifunctional
peptide engineering for sustained ocular
drug delivery
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Yoo Chun Kim1,4, Matthew B. Appell1,5, Jahnavi Pejavar1,2, Kirby T. Leo 1,6,
Charlotte Davison1,2, Patricia Kolodziejski1,2, Ann Mozzer1,4, HyeYoung Kwon 1,2,
Maanasa Sista 1,7, Nicole M. Anders8, Avelina Hemingway8,
Sri Vishnu Kiran Rompicharla1,4, Malia Edwards4, Ian Pitha 1,4,
Justin Hanes 1,2,4,5,6,8, Michael P. Cummings 3 &
Laura M. Ensign 1,2,4,5,6,8

Sustained drug delivery strategies have many potential benefits for treating a
range of diseases, particularly chronic diseases that require treatment for
years. Formany chronic ocular diseases, patient adherence to eye drop dosing
regimens and the need for frequent intraocular injections are significant bar-
riers to effective diseasemanagement. Here, we utilize peptide engineering to
impart melanin binding properties to peptide-drug conjugates to act as a
sustained-release depot in the eye. We develop a super learning-based meth-
odology to engineer multifunctional peptides that efficiently enter cells, bind
to melanin, and have low cytotoxicity. When the lead multifunctional peptide
(HR97) is conjugated to brimonidine, an intraocular pressure lowering drug
that is prescribed for three times per day topical dosing, intraocular pressure
reduction is observed for up to 18 days after a single intracameral injection in
rabbits. Further, the cumulative intraocular pressure lowering effect increases
~17-fold compared to free brimonidine injection. Engineered multifunctional
peptide-drug conjugates are a promising approach for providing sustained
therapeutic delivery in the eye and beyond.

In many disease settings, sustained delivery of therapeutic levels of
drug can improve treatment efficacy, reduce side effects, and avoid
challenges with patient adherence to intensive dosing regimens1,2. This
is particularly critical in the management of chronic diseases, where
long-term adherence to medication usage and clinical monitoring can

suffer3,4. In the ophthalmic setting, the leading causes of irreversible
blindness and low vision are primarily age-related, chronic diseases,
such as glaucoma and age-related macular degeneration5–7. Recent
approvals of devices that provide sustained therapeutic release, such
as the Durysta® intracameral implant for continuous delivery of an
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intraocular pressure (IOP) lowering agent, and the surgically implanted
port-delivery system that provides continuous intravitreal delivery of
ranibizumab, highlight the importance of these next generation
approaches for ocular disease management8–11. Conventionally, sus-
tained therapeutic effect is achieved by an injectable or implantable
device that controls the release of the therapeutic moiety into the
surrounding environment. However, these devices typically require
injection through larger gauge needles or a surgery for implantation,
with both procedures having associated risks12–14. Further, the buildup
of excipient material, the need for device removal, and the potential
for foreign body reaction can cause further issues10,15,16.

One approach for circumventing the issues associated with
sustained release devices is to impart enhanced retention time
and therapeutic effect to drugs upon administration to the eye
without the need for an excipient matrix/implant. Binding to
melanin, a pigment present within melanosomes in multiple
ocular cell types, was previously reported to affect ocular drug
biodistribution17. Due to the low turnover rate of ocular melanin,
a drug that can bind to melanin may accumulate in pigmented eye
tissues, leading to drug toxicity or drug sequestration18,19. How-
ever, with the right balance of melanin-binding affinity and
capacity, melanin may act as a sustained-release drug depot in the
eye that results in prolonged therapeutic action20. Several drugs
have been demonstrated to have intrinsic melanin binding
properties due to particular physicochemical properties, which in
some cases, prolongs the pharmacologic activity in the eye20–22.

To impart beneficial melanin-binding properties to drugs, one
approach is to engineer peptides with highmelanin binding that could
be conjugated to small molecule drugs through a reducible linker.
Thus, the peptide would provide enhanced retention time, while the
linker would ensure that drug could be released and exert its ther-
apeutic action in a sustained manner. In addition, there are available
databases describing how peptide sequence affects cell-
penetration23,24, and separately cytotoxicity25, enabling the potential
for engineering multifunctional peptides that can be chemically con-
jugated to drugs. Incorporating multiple functions into one peptide
sequence remains challenging, and thus multifunctional peptides are
often designed by fusing peptides via a linker, thus forgoing poten-
tially more efficient rational design, or by testing additional properties
on peptides with known functions26–28. In contrast, machine learning
could allow for designing peptide sequences that simultaneously
provide multiple desired properties.

Here, we describe the development of engineered peptides
informed by machine learning, which have three properties: high
binding tomelanin, cell-penetration (to enter cells and access melanin
in the melanosomes), and low cytotoxicity. As there was no prior
information for how peptide sequences affect melanin binding, we
experimentally determine the effect of peptide sequence on melanin
binding using a microarray. We then apply machine learning-based
analyses to identify peptide sequences that display all three desired
properties. Importantly, with the Shapley additive explanation (SHAP)
analysis29 of peptide variables, the machine learning model inter-
pretation provides additional insights and reasoning for the multi-
functionality of the peptides. As a proof-of-principle, we demonstrate
here that an engineered peptide, HR97, can be conjugated to the
intraocular pressure (IOP) reducing drug, brimonidine tartrate. A sin-
gle intracameral (ICM) injection of the HR97-brimonidine conjugate is
able to provide sustained IOP reduction in normotensive rabbits
compared to ICM injection of an equivalent amount of brimonidine
tartrate, or a topical dose of Alphagan® P 0.1% eye drops. Further, the
maximum measured change in IOP from baseline (ΔIOP) is increased
with ICM injection of the HR97-brimonidine conjugate. We anticipate
that engineered peptide-drug conjugates will facilitate the develop-
ment of implant-free injectables for use in a variety of ophthalmic
indications.

Results
Development of high throughput melanin binding peptide
microarray methodology
To determine how peptide sequence affects melanin binding proper-
ties, we adapted a high-throughput flow-based peptide microarray
system to characterize melanin binding events (Fig. 1a). Commercially
available eumelanin was processed into nanoparticles (mNPs) to pre-
vent sedimentation and provide reproducible surface area available
for binding topeptides printedon the substrate surface. ThemNPshad
an mean size of 200.7 ± 5.99 nm and ζ-potential of −23.7 ± 1.39mV
(Fig. 1b, c). The mNPs were further biotinylated (b-mNPs) to facilitate
fluorescent labeling with streptavidin DyLight680. The b-mNPs
showed slightly larger mean size of 216.0 ± 14.85 nm and ζ-potential
of −21.2 ± 2.15mV (Fig. 1b, c), and maintained similar spherical mor-
phology (Supplementary Fig. 1a) and binding to small molecule drugs
brimonidine tartrate and sunitinibmalate (Supplementary Fig. 1b). The
first microarray was printed with 119 peptides to screen flow condi-
tions for the highest fluorescent reporter signal, which identified that
the 500 µg/mL of biotinylated mNPs in pH 6.5 PBS buffer at room
temperature was optimal (Fig. 1d and Supplementary Fig. 2). We then
used the fluorescent reporter signals to construct a melanin binding
classification random forest model (Supplementary Data 1). The pre-
diction accuracy was 0.92. The permutation-based variable impor-
tance analysis30 further revealed that the net charge, basic amino acids,
and isoelectric point (pI) may contribute to distinguishing melanin
binding and non-melanin binding peptides (Fig. 1e).

Training of the melanin binding regression model
A second larger peptide screen was implemented to generate melanin
binding data to use for the additional model generation (Fig. 2a).
Specifically, we used the trained random forest model to predict
melanin binding for ~630,000 randomly generated peptides, and
those classified as melanin binding were selected. A total of 5499
peptides were printed in duplicate, and the fluorescent reporter
intensities were reported as the amount of the b-mNPs that bind to the
printed peptides on the microarray. Surprisingly, we identified 780
peptides displaying higher levels of fluorescent reporter intensities
than any of the 16 peptides described in the literature that bound to
human melanoma cells31 and melanized C. neoformans32, which were
previously screened by the phage display technique. Furthermore,
there were 758 peptides showing higher fluorescent values than the
highest melanin binding peptides (661.5 arb. units) from the 119-
peptidemicroarray, demonstrating the enrichment ofmelaninbinding
properties from training the random forest model. Next, the fluor-
escent reporter intensities values were used as the response variable in
training a regression model (Supplementary Data 2). Applying a vari-
able reduction procedure using random forest to eliminate less
informative variables from the data set, reduced the number of vari-
ables from 1094 to 64 (Supplementary Fig. 3a), and model perfor-
mance measured by the coefficient of determination (R2) improved
from 0.48 to 0.53. A wide array of machine learning models was
explored and trained on the variable-reduced data set and were inte-
grated with a super learning (SL) framework that combined various
types of base models weighted using a meta-learner. By applying the
iterative basemodelfiltering procedure (Fig. 2b), the complexity of the
SLwas further reduced. To exploreother combinations of basemodels
in the SL ensemble, homogeneous base models consisting of models
from only one algorithm family were constructed. A nested cross-
validation (Fig. 2c) was applied to estimate an unbiased generalization
performance. All SL models with base model reduction were selected
as the top model in the inner loop cross-validations, and the perfor-
mance evaluated in the outer loop cross-validation improved to
R2 = 0.54 ± 0.01 (Supplementary Table 1). The reduced SL was selected
amongst 31 competitive models (Supplementary Data 3) as the final
melanin binding regression model. When training the same set of
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models on thewholedata set, andnumber of basemodels in the SLwas
reduced from 907 to 38 (Fig. 2d). Adversarial computational control
was performed, and the generalization performance was
R2 = −0.04 ±0.02, indicating that themachine learningwas effective in
learning meaningful relationships in the melanin binding data set.

Training of cell-penetration and cytotoxicity classification
models
Engineered peptides must enter cells to reach and bind to melanin
within the melanosomes and should be minimally toxic to cells. Thus,
the SkipCPP-Pred23 and the ToxinPred25 databases were used to create
SL classification ensembles to engineer tri-functional peptides (Sup-
plementary Data 4, 5). Variable reduction decreased the number of
variables from 1094 to 11 for the cell-penetration data set (Supple-
mentary Fig. 3b) and from 1094 to 56 for the cytotoxicity data set
(Supplementary Fig. 3c). The prediction accuracies calculated from
out-of-bag samples improved from 0.91 to 0.93 and from 0.951 to
0.958 for cell-penetration and cytotoxicity, respectively. We subse-
quently trained basemodels and SL ensembles, and the generalization
performances in terms of Matthews correlation coefficient (MCC), F1
(harmonic mean of precision and recall), and balanced accuracy for
cell-penetration were 0.79 ±0.01, 0.90 ±0.01, and 0.90 ±0.01,
respectively; and those for cytotoxicity were 0.88 ±0.004,
0.92 ± 0.002, and 0.95 ± 0.002, respectively (Supplementary Tables 2,
3). The number of base models in the reduced SL models trained on
thewholedata setsweredecreased from310 to 65 for cell-penetration,

and from 311 to 22 for cytotoxicity (Supplementary Fig. 4). There were
300 competitive cell-penetration models and 175 competitive cyto-
toxicity models (Supplementary Data 6, 7). A GBM model and the
reduced SL were selected as the final predictive cell-penetration and
cytotoxicity models. Similar to melanin binding, adversarial controls
had decreased generalization performances, where the MCC, F1, and
balanced accuracywere−0.002 ±0.05,0.52 ± 0.03, and0.50±0.03 for
cell-penetration, and 0.001 ± 0.01, 0.05 ± 0.02, and 0.62 ± 0.04 for
cytotoxicity.

Validation of predicted peptide properties in vitro
A position-dependent amino acid frequency matrix was used to gen-
erate 127 peptides that spanned the range of low to high predicted
melanin binding. Among the 127 peptide candidates, 113 peptides were
classified as cell-penetrating and 117 peptides were predicted as non-
toxic. To experimentally measure melanin binding in vitro, biotiny-
lated peptides were incubated with mNPs, and the bound fraction was
calculated using an avidin-based fluorescent reporter (Fig. 3a). The
Pearson correlation coefficient was computed to compare the pre-
dicted and experimental melanin binding values, and the correlation
coefficient was r =0.84, showing a high level of correlation between
the predicted and experimental values (Fig. 3b).We next characterized
how the predicted cell-penetrating properties of the peptides affected
cell uptake in a retinal pigment epithelium cell line (ARPE-19). ARPE-19
cells were cultured using standard methods (non-induced, n = 3) and
using culture conditions that induce melanin production (induced,
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Fig. 1 | Pilot 119 melanin binding peptide microarray screening with machine
learning analysis. a Schematic illustration of the first peptidemicroarray. Peptides
were anchored to a microarray, and melanin nanoparticles (mNPs) with surface
biotinylation (b-mNPs) were flowed over to characterize binding events. The
fluorescence intensity of the biotin was detected using DyLight 680-conjugated
streptavidin to quantify melanin binding for each peptide. An initial classification
model was trained using the data generated. Randompeptides were then classified
by the model as melanin binding or non-melanin binding. Created with BioR-
ender.com. b,c Plot showing the sizes (b) and ζ-potential (c) of mNPs (black dots,

n = 6) and b-mNPs (gray squares, n = 6). Data are presented as mean± SD. Group
means were compared using Student’s t tests (two-tailed). d The optimal interac-
tion profiling of b-mNPs against 16 positive control peptides (peptide numbers:
1–16) and 103 random peptides (peptide numbers: 17–119). e Permutation-based
variable importance analysis of the melanin binding classification random forest.
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variables ranked by mean decrease in accuracy are shown. See Supplementary
Data 8 for detailed variable descriptions.
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n = 3)20. A positive correlation was observed between the measured
in vitro melanin binding of the peptides and the intracellular peptide
concentrations in melanin-induced cells for cell-penetrating peptides
(r =0.77, p < 2.2 × 10−16) but not non-cell-penetrating peptides (r =0.28,
Fig. 3c, d), suggesting correlation between the twoproperties. Further,
peptides predicted to be cell-penetrating demonstrated significantly

higher intracellular concentrations (median 229.4 pmol/100K cells)
than those of non-cell-penetrating peptides (median 26.7 pmol/
100 K cells) in the melanin-induced cells (p = 6.9 × 10−6, Fig. 3e). In
contrast, the intracellular peptide concentrations were not affected
by the predicted properties in non-induced cells (Supplemen-
tary Fig. 5).
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Analysis of peptide variables that contribute to observed
properties
To identify which peptide variables contributed to the properties
observed in vitro, Shapley additive explanation (SHAP) analysis of the
final predictive models was performed. The results showed that pep-
tide property predictions were based on contribution from multiple
variables. More specifically, basic peptides and higher net charge
variables had higher contributions to melanin binding predictions
(Fig. 4a), which was consistent with the top variables identified by the
random forest classification model trained on the pilot peptide
microarray. Similarly, higher net charge and higher isoelectric point
contributed more to cell-penetration (Fig. 4b), and less free cysteines
had more influence on non-toxic predictions (Supplementary Fig. 6).
To understand how reliable the interpretable results were, adversarial
controls were constructed with the final predictive models using a 10-
fold cross-validation. Indeed, the distributions and levels of variable
contributions changed for melanin binding, cell-penetration,
and cytotoxicity (Supplementary Fig. 7). Among all the peptide can-
didates, HR97 (FSGKRRKRKPR) was selected based on combination of

the three peptide properties (melanin bindingHR97 = 79.1 ± 0.7%, cell
uptakeHR97 = 759.9 ± 19.6 pmol/100K cells, non-toxicHR97 = 96.9%,
Fig. 4c). HR97 had the highest intracellular concentration, which out-
performed thewell-characterized cell-penetrating peptide fragment of
the HIV trans-activator protein (TAT47–57, YGRKKRRQRRR). HR97
demonstrated increased cell uptake compared to TAT47–57 in both the
induced ARPE-19 cells (cell uptakeHR97 = 759.9 ± 19.6 pmol/100K cells,
cell uptakeTAT47–57 = 457.1 ± 34.2 pmol/100K cells) and the non-
induced cell type (cell uptakeHR97 = 82.5 ± 9.1 pmol/100K cells, cell
uptakeTAT47–57 = 68.3 ± 4.6 pmol/100K cells). In addition, HR97
showed no sign of cytotoxicity in ARPE-19 cells at concentrations up to
5mg/mL (Supplementary Fig. 8). HR97 predictions embodied all the
properties that were the largest contributors to each functionality,
including being basic (63.64%basic amino acids), possessing a high net
charge (6.98) and a high isoelectric point value (12.99), and no
cysteines (Fig. 4d–f). By visualizing the peptide design space defined
by the sequences and variables used in training the desired functional
properties, the peptide candidates with high melanin binding predic-
tions were shown up in the same cluster, showing similar sequence

Fig. 3 | Experimental validations offinalmodel predictions onmelanin binding
and cell-penetration. a Schematic showing an in vitro melanin binding assay with
melanin nanoparticles (mNPs) using a biotin quantification kit. The DyLight 494-
tagged avidin emitted fluorescence when the biotinylated peptides displaced the
weakly interacting 4′-hydroxyazobenzene-2-carboxylic acid (HABA or H). Created
with BioRender.com. b Plot of the relationship between predictedmelanin binding
and bindingmeasured experimentally in vitro. The x-axis indicatesmelanin binding
predictions from the final super learner, and the y-axis indicates the experimental
melanin binding values (n = 4 for each peptide). Dots represent the mean value for
peptides. The black linear trend line conveys the Pearson correlation relationship
(two-tailed), and the gray area indicates the 95% confidence interval.
c, d Comparison of melanin binding and cell-penetration in melanin-induced

human adult retinal pigment epithelial (ARPE-19) cells. Blue triangles denote pre-
dicted non-cell-penetrating peptides (non-CPP), and magenta dots represent pre-
dicted cell-penetrating peptides (CPP). The x-axes indicate melanin binding
measured in vitro (n = 4 for each peptide), and the y-axes convey intracellular
peptideconcentrationmeasured from the cell uptake assay (n = 3 for eachpeptide).
Black linear trend lines indicate Pearson correlation relationships, with 95% con-
fidence intervals shown as shaded areas. The correlation coefficients and p-values
(two-tailed) are shown. e Summary of CPP (n = 113) and non-CPP (n = 14) intracel-
lular concentrations. Box plot conveys median (middle line), 25th and 75th per-
centiles (box), and the 1.5 × interquartile range (whiskers). The p value was
calculated using a Mann–Whitney U test (two-tailed).
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motifs and physiochemical properties (Fig. 5a, b). Further, peptides
predicted to have high melanin binding were mostly predicted to be
cell-penetrating, but cell-penetrating peptides may not be melanin
binding (Fig. 5c). The results also suggest that some melanin binding
peptides may be toxic (Fig. 5d).

Characterization and validation of a peptide-drug conjugate
in vivo
To investigate the effect of peptide conjugation on drug pharmaco-
dynamics, we chose brimonidine tartrate, a topical IOP lowering drug
prescribed for glaucoma treatment. TheHR97 peptidewas conjugated

Fig. 4 | Melanin binding, cell-penetration model interpretation, and variable
contributions to HR97 multifunctional peptide predictions. Overall variable
contributions to model predictions for (a) melanin binding and (b) cell-
penetration. The top important variables analyzed using Shapley additive expla-
nations (SHAP) are shown. Dots represent peptides from cross-validation test sets.
The x-axes indicate SHAP values, indicative of variable contributions to model
prediction ranging from 0 to 100. The variables were ranked based on the differ-
ence between the maximum and minimum SHAP values. The color gradient indi-
cates the variable values normalized by percentile ranks. Higher variable values are
indicated by darker magenta color and lower values by darker blue color. The
minimum and maximum variable values are noted on the right of each subplot.

c Scatter plot showing the in vitro melanin binding, in vitro cell-penetration, and
predicted cytotoxicity values of the 127 candidate peptides. Dots represent pep-
tides. HR97 (black dot) was selected based on the optimal multifunctional combi-
nation. d–f Variable contributions to HR97multifunctional predictions formelanin
binding, cell-penetration, and cytotoxicity. The top variables ranked by absolute
SHAPvalues are shown.Magenta bars indicate positive contributions, andblue bars
are negative contributions. The y-axis labels convey variable names and their values
for HR97. E[f(X)] denotes the expected prediction value, and f(x) is the final pre-
diction, calculated from the sumof all SHAP values plus E[f(X)]. See Supplementary
Data 8 for detailed variable descriptions.
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to brimonidine (HR97-brimonidine) via a quaternary-ammonium tra-
celess linker system, and the structure of the intermediates and the
purified conjugate were validated by NMR and MALDI-TOF (Supple-
mentary Figs. 9–12). Conjugation toHR97 provided a ~ 10-fold increase
in the in vitro melanin binding capacity of brimonidine (5.9 × 10−7 Kd

(M) vs. 5.0 × 10−8 Kd (M)), which brought the binding capacity closer to
other drugs with high intrinsic melanin binding, such as sunitinib
malate (Fig. 6a)20,33–37. When incubated in human aqueous fluid, only
~7% of the brimonidine was released from the HR97-brimonidine
conjugate over 28 days in vitro (Fig. 6b). However, upon incubation
with supraphysiological concentrations of human cathepsin cocktails

to enzymatically cleave the linker, ~52% of the brimonidine was liber-
ated within 48 h (Fig. 6c). The effect of the HR97-brimondine con-
jugate on IOP was then evaluated in normotensive Dutch Belted
rabbits. A single topical dose with the commercial brimonidine eye
drop (n = 5) was found to provide a peak reduction in IOP from base-
line (ΔIOP) of −3.0 ± 0.82mmHg that recovered to baseline within 8 h
(Fig. 6d). In contrast, a single ICM injection of the HR97-brimonidine
conjugate resulted in a greater peak ΔIOP compared to an ICM injec-
tion of brimonidine solution at 2 days (−4.9 ± 0.46mmHg vs.
−2.6 ± 1.65mmHg, p < 0.05, red arrow). In a separate experiment, ICM
injectionof saline orHR97 (n = 5 for each) resulted in a similardecrease

Fig. 5 | Visualization of the peptide design space based on sequences and
physiochemical properties. a t-distributed stochastic neighbor embedding
(t-SNE, used to visualize high-dimensional data) plots showing the peptide design
space defined by the combination of one-hot encoded peptide sequences and
variables used in melanin binding, cell-penetration, and cytotoxicity model train-
ing. Dots represent control peptides fromHowell et al.31 (magenta) and Nosanchuk
et al.32 (blue); peptides used in the pilot (purple) and second (gray and yellow)
melanin binding peptide microarrays; and multifunctional peptide candidates

(black and yellow) used in the validation experiments. HR97 and TAT are noted.
b t-SNE plot of peptides colored by melanin binding prediction. Higher melanin
binding values are coloredbydarkermagenta and lowerbydarker blue.c t-SNEplot
of peptides colored by cell-penetration prediction. Magenta dots represent pre-
dicted cell-penetrating peptides (CPP), and blue dots are predicted non-cell-
penetrating peptides (non-CPP). d t-SNE plot of peptides colored by cytotoxicity
prediction. Blue dots denote predicted toxic peptides, and magenta dots indicate
non-toxic peptides.
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Fig. 6 | Characterization of HR97-brimonidine in vitro and in vivo. a In vitro
binding capacity and dissociation constant ofHR97-biotin, HR97-brimonidine, and
brimonidine characterized using a melanin nanoparticle (mNP) assay (red dots,
n = 3–5). Values shown for comparison include those we previously measured for
sunitinib and N-desethyl sunitinib20, and literature values for other ophthalmic
drugs33–37. b In vitro stability of HR97-brimonidine conjugate in human aqueous
humor for 28 days. The percent remaining was normalized to the starting con-
centration on day 0 (n = 3). Data are shown as mean± SD. c Cathepsin cleavage
assay of the HR97-brimonidine conjugate. HR97-brimonidine (n = 3) were incu-
bated with human cathepsin cocktails or buffer only for 48 h at 37 °C (two-tailed
t-test). Data are shown as mean± SD. d Comparison of the intraocular pressure
(IOP) change frombaseline (ΔIOP) after a single ICM injectionofHR97-brimonidine
conjugate (white dots), brimonidine solution (black dots, 200μg brimonidine
equivalent), and a single drop of Alphagan P (gray dots, 0.15%) in normotensive

Dutch Belted rabbits (n = 5 per group). The IOP was measured every 1–2 days until
returning to the baseline. The red arrow highlights the further decrease in IOP
provided by the HR97-brimonidine. Two-tailed t-test was used, *p <0.05 (adjusted
p values for days 2, 3, 4, 6, and 8 were 0.044, 0.007, 0.038, 0.007, 0.007,
respectively). Data are presented as mean ± SEM. e Cumulative ΔIOP of brimoni-
dine (black dots) and HR97-brimonidine (gray squares) after ICM injection. The
cumulative ΔIOP was characterized by calculating the area under the curve over
the 20-day measurement period (AUClast, n = 5). Two-tailed t-test was used. Data
are presentedasmean ± SD. f Levels of brimonidine in the iris (blackdots), aqueous
(gray squares), and retina (white dots, n = 3–4) over time after ICM injection of
HR97-brimonidine (200 μg brimonidine equivalent). The concentrations of bri-
monidinemeasured in the aqueous after a single dropofAlphagan P (0.15%) aspart
of a previous study38 at 2 h (maximal IOP lowering time point; dotted line) and 4 h
(dashed line) after dosage are shown. Data are shown as mean± SD.
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in IOP that returned to baseline by day 3, and ICM injection of a phy-
sical mixture of HR97 and brimonidine tartrate (n = 5) resulted in a
similar IOPprofile to thebrimonidine solution, returning tobaseline by
day 8 (Supplementary Fig. 13). To ensure that the dramatic decrease in
IOP with the HR97-brimonidine conjugate was not due to toxicity, a
board-certified ophthalmologist evaluated the eyes injected with the
HR97-brimonidine conjugate on day 7. It was observed that the lids,
lashes, and conjunctiva were normal, the corneas were clear, the cor-
neal endothelium was normal without any pigment deposition, the
anterior chambers were normal depth, there was no apparent inflam-
mation or fibrin strands, the lenses were clear, and the iris pigmenta-
tion was symmetric. According to the same evaluation methods, no
ocular toxicity was observed upon ICM injection of saline, HR97, or a
physical mixture of HR97 and brimonidine tartrate for at least 28 days
(Supplementary Tables 4–7). Themean ΔIOP in the HR97-brimonidine
conjugate group remained significantly larger than in the rabbits
dosed with brimonidine solution or the physical mixture of HR97 and
brimonidine tartrate for up to 14 days (Fig. 6d, Supplementary Fig. 13).
Further, the time for the mean ΔIOP to return to baseline was 20 days
in the HR97-brimonidine conjugate group compared to 8 days in both
groups of rabbits dosed with brimonidine solution or the physical
mixture of HR97 and brimonidine tartrate. When summing the area
under the curve (AUClast) for the cumulative ΔIOP over the 20-day
measurement period after ICM injection, the HR97-brimonidine con-
jugate showed a ~ 17-fold greater AUC compared to brimonidine
solution (p < 0.001) (Fig. 6e). A pharmacokinetic study was conducted
separately to characterize the intraocular distribution of brimonidine
after ICM injection of HR97-brimonidine in Dutch Belted rabbits. The
brimonidine concentration remained relatively high in the pigmented
iris tissue (980ng/g) compared to less pigmented parts of the eye,
such as the aqueous humor (0.4 ng/g) and the retina (8.3 ng/g) up to
28 days after a single ICM injection (Fig. 6f). The brimonidine con-
centration in the aqueous on day 7 (83.3 ng/g) was similar to what we
previously reported at 2 h after a single drop of Alphagan P (0.15%)
(105 ng/g), which was the time with the largest IOP reduction in that
study38. On day 14 after ICM injection of HR97-brimonidine, the bri-
monidine concentration in the aqueous (3.9 ng/g) was similar to what
we previously reported at 4 h after a single drop of Alphagan P (0.15%)
(4 ng/g)38.

Discussion
Chronic eye diseases such as glaucoma require continuous treatment
to prevent disease progression. Eye drops are the most common
dosage form of glaucoma therapy, though low adherence to intensive
drop dosage schedules is a major challenge in disease
management3,39,40. One study using an electronic monitoring device
found that only64%ofpatients adhered to the three-timesdaily dosing
schedule for brimonidine eye drops over a 4-week period, even though
they were aware of the monitoring41. Sustained drug delivery systems
may be an attractive alternative for themanagement of chronic ocular
diseases like glaucoma. The first sustained-release polymer-based
implant for glaucoma treatment, Durysta®, was recently approved for
sustained IOP lowering for severalmonths with a single ICM injection9.
However, the polymermatrix typically took longer to biodegrade than
the duration of drug release, and repeated injection with additional
implants was associated with increased risk of corneal endothelial cell
loss and other corneal adverse reactions42. In contrast to conventional
polymer-based sustained drug delivery systems, the approach we
describe here does not require an implant or large amounts of exci-
pients that will remain in the eye for extended periods. By utilizing
short peptide sequences that impart melanin binding to the drug
conjugate, a sustained intraocular drug release system was created
without the need for a polymer matrix.

Ocular melanin is a biopolymer that resides within melanosomes
in pigmented ocular tissues, including the iris, ciliary body, choroid,

and retinal pigment epithelium (RPE)43. Although the amount of
pheomelanin in the eye varies depending on eye color, the amount of
eumelanin inocular tissues, including theRPE, iris pigment epithelium,
and pigmented ciliary epithelium is more consistent across the
population44. It has been described that drug binding to melanin and
accumulation inside cells may diminish therapeutic effect by seques-
tering the drug or causing ocular toxicity18,19. In the case of atropine,
the intrinsic melanin binding properties were shown to lead to pro-
longed residence time in pigmented rabbit ocular tissues45, and a
sustained miotic response in pigmented rabbits21. In addition, we
previously demonstrated that improving the intraocular absorption of
sunitinib, a drug with relatively high melanin binding capacity, with a
novel gel-forming hypotonic eye drop led to prolonged therapeutic
effect of up to 1 week after dosing20. Indeed, a recent study used
machine learning methods to characterize the structural features of
small molecule drugs that impact intrinsic melanin binding, leading to
the development of a model that predicted intrinsic melanin binding
with 91% accuracy22. These findings motivated us to develop engi-
neered adaptors designed to impart tunable melanin binding proper-
ties to small molecule drugs used to treat ocular diseases. Further, as
melanin is contained within cells, the engineered adaptor should
additionally provide cell penetration. Here, we developed a machine
learning-based methodology to engineer tri-functional peptides that
displayedmelanin binding, cell-penetration, and non-toxic properties.
The peptide sequence that provided the optimal combination of high
melanin binding, high cell-penetration, and low cytotoxicity, HR97,
was then conjugated to brimonidine as a proof-of-principle. TheHR97-
brimonidine conjugate provided up to 18 days of IOP lowering with a
single ICM injection in normotensive rabbits, which contrasts with the
8 h-effect provided by a brimonidine eye drop.

Peptides are short sequences of amino acids that can have many
combinations with diverse biological functions. Compared to other
aptamers and small molecule drug libraries, peptides are relatively
cost effective to synthesize and are relatively easy to modify or con-
jugate to small molecule drugs46. Currently, there are more than 80
FDA-approved peptide drugs and more than 600 in clinical and pre-
clinal trials47–49. Peptides optimized for a single function, either exhi-
biting cell-penetration or cell targeting properties, have been widely
exploited as drug carriers to shuttle drugs across biological
barriers50–52. Peptides such as TAT, penetratin, PEP-1 and polyarginine
(R6 or R8) and have been conjugated with various cargos for targeting
the anterior and posterior segment53–60. For example, various fluor-
escein conjugated peptides were screened for the ability to cross
porcine cornea ex vivo60,61. Penetratin (PNT) showed an eightfold
increase in permeability compared to PEP-1, though most of the pep-
tide was found to be sequestered within cells rather than having
crossed the cornea60,61. In another study, TAT peptide was conjugated
to human acidic fibroblast growth factor (aFGF) and applied topically
to rat eyes62. They found that the conjugates reached the retina with a
tmax of 30–60min andwith possiblemechanismof conjunctival-scleral
penetration route62. However, it is known that drugs can more easily
reach the posterior segment with topical administration in rat and
mouse eyes compared to larger eyes, such as rabbits63–65.

Many peptide screening technologies have been developed for
identifying novel functional peptides, including phage display, mRNA
display, and peptide microarray66–68. Phage display and mRNA display
are capable of screening a larger number of peptides (~1011–1013)
compared to peptidemicroarray (~105). However, in phage display and
mRNA display, the peptide sequences are randomly generated with
fixed ratios of amino acids67. In contrast, coupling computationally
generated peptide sequences with peptide microarrays has the
advantage of rapidly improving peptide design through machine
learning model refinement. Peptides can be computationally repre-
sented by physicochemical and structural descriptors69 or encoded
using various rules such as binary encoding and evolution-based

Article https://doi.org/10.1038/s41467-023-38056-w

Nature Communications |         (2023) 14:2509 9



encoding70. Since peptide sequence is the source of functionality, a
machine learning-based approach can be employed to develop pre-
dictors that learn the relationships between peptide variables derived
from the sequence and the desired functional property71–73. Peptide
databases have also been made available for data-driven functional
peptide design, including cell-penetration and toxicity24,25. However,
there is only a limited number of studies for, and no database of,
melanin binding peptides. An example here is that in the two studies
that reported peptide sequences that were characterized as melanin
binding, phage display was used to identify 8 peptides that bind to
melanin in human melanoma cells31 and 8 peptides that bound to
melanized C. neoformans32. However, in our peptide microarray, 8 of
these peptides did not demonstrate detectable melanin binding, and
overall, we identified 780 peptides displaying higher levels of melanin
binding than any of these peptides described in the literature. Fur-
thermore, the second peptide microarray designed using the initial
machine learning model provided more potent melanin binding pep-
tides compared to the first peptide microarray, demonstrating the
rapid improvement in design by machine learning model refinement.

Multifunctional peptides with dual or triple pharmacological
properties have also been integrated into drug delivery systems
through conjugation to drugs or drug-loaded cargos26,74,75. However, it
is challenging to design peptides with multiple functions contained in
a single sequence. Often single function peptides are fused directly or
by a linker peptide75–77, which may increase the peptide length and
reduce the desired functional properties of each component. Another
approach is to optimize additional functional properties by sub-
stituting amino acids on a template peptide with a known function27,28,
which may require extensive laboratory screening and is time-
consuming. Generating multifunctional peptides with the flexibility
to choose the desired functional levels is a less explored research
area78,79. Here, our machine learning and model interpretation
approach guided the engineering of multifunctional peptides. The
peptide properties were analyzed using the shared variable set,
revealing mutually important variables contributing to both melanin
binding and cell-penetration, where peptides with moderate to high
net charge and containing more basic amino acids tend to possess
both melanin binding and cell-penetrating properties. Further, we
unexpectedly observed correlation between melanin binding and cell-
penetrating in cell uptake in vitro. Thus, the highest intracellular
accumulation was achieved by increasing the amount of peptide that
can access intracellular melanosomes, where the peptides can then
bind to melanin and provide sustained drug release.

Many machine learning models including random forest, support
vector machines, and deep learning have been developed to predict
how amino acid sequence governs peptide properties80. Super learn-
ing is an ensemble machine learning method that takes advantage of
various machine learning models. The predictive performance of a
super learner ensemble is assured to be at least as accurate as the best-
performing base model81,82. The same model types with varying
hyperparameter combinations can be included in a SL ensemble.
Recently, it was described that base model hyperparameter tuning
could improve overall SL model performance83. Based on this finding,
we further developed a procedure to systematically select optimal
base model composition by iteratively filtering out models that have
less contributions to the SL ensemble. Indeed, we obtained better SL
model performance compared to the one including all basemodels. In
this study, we explored a wide array of possible machine learning
models and identified multiple competitive models through statistical
analyses. SL provided a framework to integrate these exploredmodels.
Although the meta-learner may add a layer of complexity, it demon-
strated an interpretable summary of themodel importance in terms of
their contributions to the final predictions. In addition, the complexity
of the machine learning architecture was reduced by variable reduc-
tion of the data sets and base model filtration of SL. Further,

interpretablemachine learning that extracts relevant information such
as variable contributions to output predictions from the data rela-
tionships learned by the model is important for explaining model
predictions84,85. Many of the functional peptide predictors and other
drug discovery tools do not have information on how and why top
candidates were identified86–88. In this study, we showed that inter-
pretation of machine learning models can provide insights to improve
the design of multifunctional peptides. The SHAP analysis not only
indicated important variables contributing most to the model pre-
diction, but also showed the relationships between variable values and
prediction outputs.

The studies described here arenotwithout limitations. First, while
the in vitro ARPE19 cell assay helped validate the cell-penetrating and
melanin binding performance, the methodology used here did not
differentiate between peptides that were free or bound to melanin or
other structures within the cell. Indeed, there was a baseline level of
peptide associated with non-pigmented cells, but a substantial
increase in cellular localization was observed when the cells were
induced to produce melanin. Second, the traceless linker conjugation
yield of the HR97-brimonidine was low and requires further optimi-
zation. The cathepsin-labile linker was chosen because cathepsins are
largely located intracellularly and are present in minimal amounts in
extracellular fluids such as aqueous humor89–92. Thus, the intracam-
erally delivered HR97-brimonidine would be stable until it had loca-
lized within melanin-containing cells. However, the level of
brimonidine measured in rabbit iris tissue remained high, suggesting
that further optimization of the linker cleavage and brimonidine
release rate may also extend the duration of the therapeutic effect.
Finally, the duration of IOP lowering reported here (20 days) was suf-
ficient to demonstrate the proof-of-principle in normotensive rabbits
but would not be clinically translatable. Future work with more potent
drugs may increase the duration of action.

The approach we described here to apply ensemble machine
learning to peptide microarray enabled the efficient design of multi-
functional peptides, which in this application enhanced the intraocular
pharmacokinetics and pharmacodynamics of the ophthalmic drug
brimonidine. Engineered HR97 peptide demonstrated increased cell-
penetrating properties compared to known cell-penetrating peptides,
such as TAT, and simultaneously possessed high melanin binding
capacity and low cytotoxicity. In the current context, utilizing short
peptide sequences that impart melanin binding to a drug conjugate
may provide an avenue for creating safe and effective implant-free
sustained intraocular drug release systems. More broadly, the
approach described here can be applied to generate multifunctional
peptide-drug conjugates for a variety of biomedical applications.

Methods
Material sources
Brimonidine was purchased from TCI America. Eumelanin from Sepia
officinalis, 0.22 µm Millex-GV PVDF filter, ferric ammonium citrate,
bovine serum albumin (BSA), Tween 20, fetal bovine serum (FBS),
trifluoroacetic acid (TFA), tert-Butyl methyl ether (MTBE), thionyl
chloride, Tetrabutylammonium iodide, N,N-diisopropylethylamine,
human cathepsins B, K, L and S, Whatman® Anotop® 0.02 µm syringe
filter and Triton X-100 were purchased from Sigma Aldrich (St. Louis,
MO,USA). ARPE-19 (ATCCCRL-2302, lotNo. 70013110), andDMEM:F12
medium were purchased from the American Type Culture Collection
(Manassas, VA, USA). EZ-LinkTM Amine-PEG2-Biotin, BupH MES buffer
saline pack (2-(N-morpholino)ethanesulfonic acid buffer), EDC (1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride), NHS
(N-hydroxysuccinimide), Pierce™ Fluorescence Biotin Quantitation
Kit, rapid equilibrium dialysis (RED) 8 K device, PrestoBlue™ HS Cell
Viability Reagent, DMEM with high glucose and pyruvate, Trypsin-
EDTA (0.25%) with phenol, RIPA lysis buffer, Streptavidin DyLight 680,
and penicillin/streptomycin were purchased from Thermo Fisher
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Scientific (Waltham, MA, USA). Disposable PD-10 desalting columns
were purchased from VWR. Dulbecco′s Phosphate Buffered Saline
(DPBS), 1 × phosphate buffered saline (PBS), 10 × PBS, high-
performance liquid chromatography (HPLC) grade acetonitrile,
dimethylformamide (DMF), and water were purchased from Fisher
Scientific (Hampton, NH, USA). Mc-Val-Cit-PAB was purchased from
Cayman Chemical (Ann Arbor, MI, USA). Endotoxin-Free Ultra-pure
Water were purchased from MilliporeSigma (Burlington, MA, USA). A
Hamilton 1700 Series gas tight syringes (25 µL, Model 1702 RN, 27
gauge) was purchased from Hamilton Company (Reno, NV, USA). BD
1mL TB syringe with 28G needles were purchased from BD (San Jose,
CA, USA). Isoflurane was purchased from Baxter (Deerfield, IL, USA).
Reverse-action forceps were purchased from World Precision Instru-
ments (Sarasota, FL, USA). Neomycin, polymyxin b, and bacitracin zinc
ophthalmic ointment was purchased from Akorn (Lake For-
est, IL, USA).

Melanin nanoparticle synthesis and characterization
Melanin nanoparticles (mNPs)were synthesized from the eumelanin of
Sepia officinalis. In brief, 10mg/mL of eumelanin was suspended in the
DPBS using an ultrasonic probe sonicator (Sonics, Vibra Cell VCX-750
with model CV334 probe, Newtown, CT, USA) by pulsing 1 s on/off at
40% amplitude for 30min in a 4 °C water bath. The suspension was
then filtered through a 0.22 µm Millex-GV PVDF filter and transferred
to PD-10 desalting columns. The resulting mNPs solution was lyophi-
lized for 7 days and stored at −20 °C until further use. For mNP bioti-
nylation (b-mNPs), mNPs were suspended in 2mL MES buffer with
2.4mg of EDC and 3.6mg of NHS for 15min at room temperature to
first activate the carboxylic acid groups. To increase the buffer pH
above pH 7.4 for amine reaction, 400 µL of 10 × PBSwasdirectly added
to the mixture and incubated for 5min. Various amounts of EZ-LinkTM

Amine-PEG2-Biotin (5, 15, 20, 30mg) were reactedwith activatedmNPs
for 2 or 6 h at room temperature. Since all conditions led to a similar
degree ofmNP biotinylation, reaction conditions using 5mg of amine-
PEG2-biotinwith 2 h incubation at room temperature was usedmoving
forward. The reactionmixture was then transferred to PD-10 desalting
columns to further collect the b-mNPs. To transfer the b-mNPs to
different solvents (water, pH 6.5 PBS, pH 7.4 PBS) for optimization of
the peptide microarray, PD10 columns were first equilibrated with
buffer, and then the b-mNPs were added. Particle size and ζ-potential
were determined by dynamic light scattering and laser Doppler ane-
mometry, respectively, using a Zetasizer Nano ZS90 (Malvern Instru-
ments). Size measurements were performed at 25 °C at a scattering
angle of 173°. Samples were diluted in 10mMNaCl solution (pH 7), and
measurements were performed according to instrument instructions.
Pierce™ Fluorescence Biotin Quantitation Kits were used to quantify
thebiotin content on the b-mNPs. B-mNPs (1mg/mL)were diluted 1:50,
1:100, 1:200 with 1 × PBS and the standard biocytin concentration
(10–60pmol/10 µL) were freshly prepared for measuring the biotin
concentration. Transmission electron microscopy (H7600; Hitachi
High Technologies America) was conducted to determine the mor-
phology of mNPs and b-mNPs.

Optimization of processing conditions for peptide microarray
A total of 119 peptides, including 8 peptides of length 7 amino acids
(aa) and 8 peptides of length 10 aa from the literature31,32, and 103
random 15 aapeptides generatedwith a frequencyof 5% for eachof the
20 amino acids, were printed in duplicate on peptide microarrays by
PEPperPRINT. The peptide microarrays contained hemagglutinin (HA)
peptides (YPYDVPDYAG; 9 spots) as internal quality controls. Vary-
ing screening conditions of the peptide microarray were performed. A
spectrum scan of melanin nanoparticles (mNPs) and biotinylated
mNPs confirmed that the autofluorescence was near background
levels after Em=650 nm. Streptavidin DyLight 680, which was the
highest wavelength (Ex = 675 nm, Em= 705 nm) that PEPperPRINT

coulduse in their peptidemicroarray system,was selected tominimize
detection of melanin. Two peptide microarray copies were first pre-
stained with streptavidin DyLight680 (0.2 µg/ml) and the control
antibody (manufacturer: BioxCell & PEPperPrint, catalogue numbers:
#RT0268, PEPperCHIP® Mouse Monoclonal anti-HA (12CA5)-
DyLight800Control; 1:2000dilution or 0.5 µg/ml) in incubation buffer
(pH 6.5 PBS with 0.005% Tween 20 and 10% Rockland blocking buffer
MB-070) for 45min at room temperature to examine background
interactions and internal quality control. No background interaction of
streptavidin DyLight680 or the control antibody with the 119 different
peptides were observed. To screen the optimal melanin binding con-
dition, six different washing buffers were prepared: PBS at pH 6.5 with
or without 0.005% Tween 20, PBS at pH 7.4 with or without 0.005%
Tween 20, andUltra-purewaterwith orwithout 0.005%Tween 20. The
Rockland blocking buffer MB-070 was used to incubate all peptide
microarrays for 30min before the melanin binding assay. Six different
incubation buffers were formulated with 10% of blocking buffer in the
six different washing buffers mentioned earlier. b-mNPs (10, 100, or
500 µg/ml) in six different incubation buffers were incubated with the
peptide microarray for 16 h at 4 °C or room temperature. All micro-
arrays were subsequently washed with the same type of washing buf-
fers and incubated with 0.2 µg/mL of streptavidin DyLight680 for
45min in the same type of incubation buffer at room temperature for
detecting the b-mNPs. The peptide microarrays were then washed for
3 × 10 s with the same type of washing buffers and proceeded to
quantification of spot intensity. The pilot tests suggested that 500 µg/
mLof biotinylatedmNPs in pH6.5 PBSbuffer at room temperaturewas
optimal (optimal condition shown in Fig. 1d, remaining conditions
shown in Supplementary Fig. 2. With the optimal flow conditions, 10 of
the 16 peptides reported in the literature had detectable fluorescence
intensities due to binding by b-mNPs.Quantification of spot intensities
and peptide annotation were based on the 16-bit gray scale Tag Image
File Format files that exhibit a higher dynamic range than the 24-bit
colorized Tag Image File Format files. Microarray image analysis was
done with PepSlide® Analyzer, version 1.4. The software algorithm
decomposed fluorescence intensities of each spot into raw, fore-
ground and background signal, and calculated mean median fore-
ground intensities and spot-to-spot deviations of spot duplicates.
Based on mean median foreground intensities, intensity maps were
generated and interactions in the peptide maps highlighted by an
intensity color code with red for high and white for low spot inten-
sities. The PEPperPRINT protocol tolerated a maximum spot-to-spot
deviation of 40%, otherwise the corresponding intensity value was
zeroed. We labeled the top 20% of peptides ranked by intensities as
melanin binding (23 peptides), which included 10 literature-reported
peptides with non-zero fluorescent signal. The remaining peptides
were labeled as non-melanin binding (96 peptides).

Random forest classification model training with the pilot 119-
peptide microarray
Random forest is an ensemble tree-based statistical machine learning
model and is robust to variable noise and insensitive to variable
scales30. Physiochemical variables and numerical representations of
peptides were computed using the R packages Peptides, version 2.4.493

and protr, version 1.6–294. The resulting 1094 variables include com-
position, transition, distribution, autocorrelation, conjoint triad, quasi-
sequence-order descriptors, and pseudo-amino acid and amphiphilic
pseudo-amino acid composition descriptors (Supplementary Data 8).
The maximum value of lag was set to 6, so the minimum length of a
peptide to be analyzed without generating a missing value is 7. A
random forest classification model with 100,000 trees and balanced
sampling was trained on the melanin binding data set. The model was
built using the R package randomForest, version 4.7–1.195. For each tree
in the random forest, a bootstrap sample of ~63.2% of the melanin
binding peptides and the same amount of non-melanin binding
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peptides was generated to construct the tree. The remaining peptides
were considered out-of-bag to the tree and were used to evaluate the
performance of the random forest by calculating the aggregated out-
of-bag predictions across all trees. The out-of-bag class errors were
calculated and a classification threshold of 0.5 proportion of votes was
used. As part of the same analysis, permutation variable importance
was obtained with the importance function in the randomForest
package. For each tree in the random forest, out-of-bag instances were
permuted for each variable in the subset, and the decrease in accuracy
was recorded. The mean decrease in accuracy for each variable was
calculated over all 100,000 trees and normalized by dividing themean
by the standard error.

Expansion of the peptide microarray
Melanin binding candidate peptides were generated randomly with a
frequency of 5% for each of the 20 amino acids. Peptides classified as
melanin binding by the trained random forest model were selected,
resulting in 5483 peptides of length ranging from7 to 12 aa. Alongwith
the 16 known melanin binding peptides from the literature, a total of
5499 peptides were printed in duplicate along with HA controls
(YPYDVPDYAG; 68 spots) on peptide microarrays by PEPperPRINT.
Peptide sequences were printed in duplicate of a custom peptide
microarray. Pre-staining of a peptide microarray copy was done with
streptavidin DyLight680 (0.2 µg/ml) and the control antibody (mouse
monoclonal anti-HA (12CA5) DyLight800; 0.5 µg/ml) in incubation
buffer to characterize non-specific binding. Subsequent incubation of
another peptide microarray with the b-mNPs at a concentration of
500 µg/ml in incubation buffer (PBS at pH 6.5 with 0.005% Tween 20
with 10% Rockland blocking buffer MB-070) was followed by staining
with streptavidin DyLight680 (0.5 µg/mL) and the control antibody
(0.5 µg/mL). The control staining of the HA epitopes was done simul-
taneously as internal quality control to confirm the assay quality and
the peptide microarray integrity. Quantification of spot intensities
were described earlier in the previous section.

Variable reduction of the machine learning input data
To reduce the number of variables and improve the model perfor-
mance, a variable reduction procedure was applied to the machine
learning input data before model training. Permutation-based vari-
able importance was first computed on the data set with random
forest (100,000 trees) using the R package ranger, version 0.14.196,
with balanced sampling for classification analyses. Variables with
negative importance values were removed. Next, subsets of the
machine learning data set containing cumulative top-ranked vari-
ables were used to train random forests with 1000 trees, and the
models were evaluated by the Akaike information criterion (AIC). The
AIC values classification models were calculated using the original
formula proposed by Akaike97: AIC= � 2lnðL̂Þ+ 2k, where L̂ is the
maximum likelihood value, and k is the number of parameters. For
regression AIC was calculated using the likelihood of normal dis-
tribution, assuming residuals are normally distributed:
AICreg =NlnðMSEÞ+ 2k, where N is the number of samples, andMSE is
the mean squared error. The classification AIC was based on the
likelihood of Bernoulli distribution, and was generalized to multi-
class classification: AICclf = 2 � ln2 � N � HpðqθÞ+2k, where N is the
number of samples, Hp is denotes cross entropy, and qθ is the esti-
mated probability with parameters θ. The variable subset with the
lowest AIC value was selected for each machine learning data set.

Machine learning model training for melanin binding
predictions
Peptide variables were computed as described for themelanin binding
peptides in the pilot microarray. Because the distribution of melanin
binding fluorescence intensity was right-skewed, the intensity values
were first normalized by log10-transformation for a balanced response

variable. The melanin binding data set was processed using the vari-
able reduction method. To generate the machine learning input data
set, less informative peptide variables were eliminated as described
above. A nested cross-validation framework was then applied to pro-
vide an unbiased estimate of the generalization performance. The
framework contains two types of cross-validations. The first includes
ten sets of train-test splits computed using a Monte Carlo sampling
method, which is referred to as the outer loop cross-validation. For
each training set in the outer loop, another ten sets of train-test splits
were generated using a modulo method. These cross-validations are
referred to as the inner loop cross-validations. The inner loop cross-
validations were used to select the best-performing model, and the
outer loop cross-validation was used to evaluate the whole machine
learning training process.

A wide array of machine learning models, including neural
networks98, gradient boosting machines (GBM)99, extreme gradient
boosting (XGBoost)100, generalized linearmodel (GLM)101, (distributed)
random forests (DRF)30, and extremely randomized trees (XRT)102,
were employed to train the input data. Hyperparameters for neural
networks, GBM, and XGBoost were selected using the random grid
search. Details about the grids used and the hyperparameters selected
can be found in Supplementary Note 2 and the provided code. There
were 300 neural networks, 300 GBM models, and 300 XGBoost
models trained for themelanin binding data set, alongwith five default
GBM models, three default XGBoost models, one GLM, one DRF, and
one XRT. The model types and hyperparameters were defined based
on the architecture of H2O AutoML103. For non-tree-based models,
variables in the training set were scaled to have zero means and unit
variances. Unstable neural networks with potentially large activation
values were removed.

To integrate the models explored, a super learner (SL) model
was built using the R interface of H2O.ai, version 3.38.0.2104. A
generalized linear model algorithm (meta-learner) was used to cal-
culate the coefficients (weighted contributions) of the base
machine learning models according to their holdout predictions
generated from the tenfold cross-validation. The meta-learner was
then evaluated with another tenfold cross-validation trained on the
base model holdout prediction data set. Coefficient distributions
were collected from the ten cross-validation meta-learner models,
resulting in a n ×m matrix, where n is the number of base models,
and m = 10 is the number of cross-validation folds. The original SL
algorithm used a meta-learner to calculate base model contribu-
tions and did not emphasize explicit base model selection. To
reduce the complexity of SL, we developed an iterative filtering
procedure to improve performance and decrease prediction run
time. Specifically, base models with the number of zero coefficients
>5 across cross-validation folds were removed. The filtering pro-
cedure was repeated until there were no base models or no further
reduction of the base models. In addition, SL models with different
compositions of base models were also constructed for compar-
ison. Homogeneous SL ensembles were constructed with base
models of the same model type (neural networks, GBM, XGBoost).

Regression models trained on the melanin binding data were
evaluated in each inner loop cross-validation using multiple metrics,
including coefficient of determination (R2), percent normalized mean
absolute error (MAE, less sensitive to outliers), andpercent normalized
root mean squared error (RMSE). A scoring scheme that calculates the
sum of ranks of all metrics used was applied, and non-parametric
Mann–Whitney U tests comparing the top model and the rest of the
models were conducted to identify competitive models, with p values
adjusted using the Benjamini–Hochberg procedure105. Evaluation
results regarding the competitive models whose performances were
not significantly different from the topmodel for all evaluationmetrics
were reported (Supplementary Data 3). Next, the top model was
selected from each inner loop cross-validation and evaluated using the
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corresponding test sets in the outer loop cross-validation, and the
generalization performance was computed (Supplementary Table 1).

Finally, the abovementioned model training procedure was per-
formed on the whole data set, and the final predictive model was
selected based on the same scoring scheme of the sum of all
metric ranks.

Machine learning model training for cell-penetration
predictions
Cell-penetrating and non-cell-penetrating peptides of various lengths
(10–61 amino acids) were collected from the SkipCPP-Pred website23,
for which the redundant cell-penetrating peptides from the CPPsite2.0
database24 have been removed, and non-cell-penetrating peptides
were generated randomly23. There were 460 cell-penetrating and 462
non-cell-penetrating peptides. Peptide variables were computed as
described above for classification of the melanin binding peptides
from the pilot microarray. The variable reduction procedure as
described above was then applied to the data set. A nested cross-
validation framework was employed to generate train-test splits for
outer and inner loop cross-validations. Multiple machine learning
models were trained on the cell-penetration data set, including 100
neural network grid models, 100 GBM grid models, 100 grid XGBoost
models, five default GBM models, three default XGBoost models, one
DRF, and one XRT. Models were integrated using the SL framework,
resulting in SL models separately containing all basemachine learning
models, reduced base models, all neural networks, all GBM models,
and all XGBoost models. Balanced sampling was applied where
appropriate for the machine learning algorithms.

Classification models were evaluated with logarithmic loss, Mat-
thews correlation coefficient (MCC), F1 (harmonic mean of precision
and recall) and balanced accuracy. A scoring scheme computing the
sums of all metric ranks was applied. Competitive models with no
significant difference from the top model in terms of model perfor-
mance, along with the means and standard errors of metrics obtained
from 10-fold cross-validations were reported (Supplementary Data 6).
The topmodel from each inner loop cross-validationwas selected. The
generalization performance (Supplementary Table 2) was evaluated in
the outer loop cross-validation, using logarithmic loss, MCC, F1,
balanced accuracy, enrichment factor (EF), and Boltzmann-enhanced
discrimination of receiver operating characteristic (BEDROC)106.

The final predictive model was generated by applying the same
model training procedure on the whole data set. Class prediction
thresholds for the finalmodelwere selected based on themaximum F1.

Machine learning model training for cytotoxicity predictions
Toxic and non-toxic peptides of various lengths (4–35 aa) were col-
lected from the ToxinPred website25. Peptides with length <7 were
excluded, resulting in 1777 toxic and 3522 non-toxic peptides. Peptide
variables were calculated as described in the random forest classifi-
cation section, and non-toxic and toxic peptides were labeled as
positive and negative, respectively. The dimensionality of the data set
was reduced using the variable reduction as described in the above
section. A nested cross-validation framework was applied, and the
machine learning models include 100 neural networks, 100 GBM
models, 100 XGBoost models, five default GBMmodels, three default
XGBoost models, one GLM, one DRF, and one XRT. The mean number
of peptides in non-toxic and toxic classes was calculated and used as
the number of samples of each class for balanced sampling. Models
were integrated using the SL framework, generating SL models con-
taining all base models, reduced base models, all neural network
models, all GBMmodels, and all XGBoostmodels. Themodels selected
as the top model in each inner loop cross-validation were selected
using the evaluation metrics and the scoring scheme as described for
cell-penetration model training. Competitive models were reported in
SupplementaryData 7. The generalization performancewas computed

based on the selectedmodels and recorded in Supplementary Table 3.
The final predictive model was generated by performing the above
model training procedure on the whole data set, and the class pre-
diction threshold was determined by the maximum F1 score.

Peptide generation for machine learning model validation
Amino acid frequencies at each position were calculated for the 5499
melanin binding peptides used in the expanded peptide microarray,
where the peptidesweregrouped into 8 sets basedon intensity ranges.
For each intensity group, random peptides were simulated based on
the position-dependent amino acid frequency. In total, 127 peptides of
length ranging from 7 to 12 were selected, including the TAT47-57

peptide as the reference cell-penetrating peptide and 7 peptides from
the expanded peptide microarray as validation controls. Melanin
binding intensity values were predicted by the reduced melanin
binding SL model. Selected peptide sequences were subsequently
analyzed by the cell-penetration and toxicity final models for further
classification.

Peptide synthesis
The library of 127 C-terminal biotinylated peptides used in cell culture
experiments was synthesized by Gene Script using their Crude Peptide
Library service. A terminal lysine was added to each peptide sequence
to facilitate biotin conjugation. Peptides from the crudepeptide library
were further purified by being first dissolved in 50% acetonitrile (ACN)
with 0.1% TFA at 10mg/mL. Shimadzu LC20 high-performance liquid
chromatography (HPLC) system with Phenomenex reverse-phase
preparative HPLC column (Gemini® 10 µm C18 110 Å, LC Column
250× 21.2mm, AXIA™ Packed) were used to separate and collect the
peptides with an elution gradient of 5/5/90/90/5/5% solvent B (TFA
0.05% in ACN) at 0/2/10/12/13.5/15min with a flow rate of 5mL/min
with monitoring at 220 nm.

Melanin binding assay for machine learning model validation
ThemNPsweremixedwith C-terminal biotinylated peptides (10 µM)
in pH 6.5 PBS solution and incubated in the rapid equilibrium dia-
lysis (RED) 8 K device for 24 h on an orbital shaker at 900 rpm. A
total of 10 µL of the solution from the rapid dialysis reservoir was
collected. The concentration of unbound biotinylated peptides was
analyzed with the Pierce™ Fluorescence Biotin Quantitation Kit.
Four sets of melanin binding assays were performed. Melanin
binding was calculated as the difference in free peptide normalized
with the starting peptide concentration. Experimental melanin
binding values of the 127 peptide candidates were compared with
the predicted melanin binding values with the Pearson correlation.
Melanin binding predictions larger than 100% were cast to 100%
because this was the maximum value in the melanin binding
training set.

Cell-penetration assay with ARPE19 cell type for machine
learning model validation
Three 96 well plates per ARPE19 cell type group (melanin-induced or
non-melanin induced) were seeded at 0.01 × 106 cells/well. ARPE-19
cells were either cultured with DMEM:F12 medium containing 10% FBS
according to protocol provided by the vendor (non-melanin induced)
or cultured in DMEM high glucose, pyruvate media with 250 µM of
ferric ammonium citrate107 for 2 months (melanin-induced)20. The
expression of melanin was confirmed visually with bright field micro-
scopy and by measuring absorbance at 475 nm (>0.4 arb. units)20.
Within each plate, 12 wells were randomly selected to quantify the cell
numbers with an automated cell counter (Countess 3 Automated Cell
Counter, Thermo Fisher) for normalization in the cell uptake study.
Next, 100 µL (100 µM in pH 6.5 PBS) of each of the 127 C-terminal
biotinylated peptides was added to n = 3 wells for both the induced
and non-induced ARPE-19 cells for 6 h at 37 °C. The cells were then
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washed thoroughly five times with PBS solution to remove extra-
cellular peptide. To quantify cell-associated peptides, the cells were
lysed with 100 µL of RIPA lysis buffer at 4 °C for 48 h. The concentra-
tion of intracellular biotinylated peptides was analyzed with the
Pierce™ Fluorescence Biotin Quantitation Kit. The mean intracellular
concentration values of the three replicates were then grouped by cell
types (melanin-induced or non-melanin induced), and a two-tailed
Mann–Whitney U (Wilcoxon rank-sum) test was calculated using the
wilcox.test function in R. The intracellular concentration values were
also plotted against experimental melanin binding. The relationships
between experimental cell-penetration and melanin binding values in
the two ARPE19 cell type groups were quantified using the Pearson
correlation.

Shapley additive explanations (SHAP) analysis of variable
contributions
To better characterize variable contributions to peptide property
predictions, models trained on the outer loop training sets with the
same hyperparameters as the final predictive model were used to
calculate SHAP values using the corresponding test sets. For each
sample in the test set, the SHAP analysis calculated the additive vari-
able attributions to the model prediction. Specifically, models were
imported using the Python interface ofH2O.ai, version 3.38.0.2108, and
the background data set was generated by randomly selecting
100 samples from the training set. Next, SHAP values, with the number
of sampling times set as 1000, were computed using the function
KernelExplainer in the Python package SHAP, version 0.41.029. The
KernalSHAP method calculates variable contributions (SHAP values)
using a local interpretable model-agnostic explanations (LIME)
strategy109. The top 20 variables ranked by the difference between the
maximum and minimum SHAP values in the aggregated test set sam-
ples were selected and visualized along with the variable values nor-
malized by percentile ranks.

Explanations of HR97 multifunctional peptide predictions were
computed using the final models trained on the whole machine
learning data sets. The sameSHAP analysismethod as described above
was performed, and the top variables ranked by absolute SHAP values
were visualized as waterfall plots using the function plots.waterfall in
the SHAP package.

Adversarial computational controls
To assess if the model performance evaluation was overly optimistic,
and if the machine learning models have learned the meaningful
relationships in the data sets, adversarial controls were generated by
training the models on the data sets with the response variables ran-
domly shuffled110. The same nested cross-validation framework and
model selection procedure as described in the above model training
sections were used, and the generalization performance was com-
puted with the models selected as the top model from the inner loop
cross-validations. Statistical results of the competitive models from
the inner loop cross-validations (Supplementary Note 3), and the
generalization performance of the adversarial controls evaluated in
the outer loop cross-validation (Supplementary Tables 1–3) were
reported. Variable contributions of the adversarial control models
having the same hyperparameters as the final predictivemodel of each
property were computed and visualized as described in the SHAP
analysis section.

Peptide design space visualization
Peptide sequences of the control melanin binding peptides, pilot 119
peptides, expanded 5499 peptides, and 127 peptide candidates for
experimental validation were converted using one-hot encoding, and
the post-padding was applied for peptides with shorter lengths.
Combined with the union set of variables from the variable-reduction

processed melanin binding, cell-penetration, and cytotoxicity data
sets, the new data set was normalized and analyzed using t-Distributed
Stochastic Neighbor Embedding (t-SNE), a nonlinear dimensionality
reduction technique, with the Rtsne function in the R package Rtsne,
version 0.16111. The t-SNE results were visualized along with the multi-
functional predictions.

Traceless linker system for conjugating HR97 to brimonidine
The traceless linker systemwas designed for release of intact parent
drug when triggered by an intracellular chemical and enzymatic
event, such as protease cleavage of the amide bond112. Activation of
the linker, MC-Val-Cit-PAB-OH (Maleimidocaproyl-L-valine-L-citrul-
line-p-aminobenzyl alcohol), was conducted as previously reported
with minor modifications112. MC-Val-Cit-PAB-OH (8.68 g, 15.2 mmol)
was suspended in DMF (43.4 mL) at 0 °C with water bath sonication
for 30min. After the solids were fully dispersed, thionyl chloride
(1.22mL, 16.7 mmol) was added dropwise. Following the addition,
the reaction was held at 0 °C for 45min and then treated slowly with
water (130mL) to precipitate a yellow solid (MC-Val-Cit-PAB-Cl),
which was collected by filtration. The solid was washed sequentially
with water and MTBE and dried under vacuum (~30% yield)112. Bri-
monidine base was combined with the MC-Val-Cit-PAB-Cl (1.1 eq) in
DMF (0.25M) at room temperature. Tetrabutylammonium iodide
(0.5 eq) was added to the solution, followed by the addition of N,N-
diisopropylethylamine (2.5 eq), and themixture was stirred for 24 h.
The mixture was diluted with 50:50 acetonitrile:water at 40-fold
dilution for purifying the MC-Val-Cit-PAB-brimonidine. A Shimadzu
LC20 HPLC system coupled with photodiode-array detector (PDA)
and with Phenomenex reverse-phase preparative HPLC column
(Gemini® 10 µm C18 110 Å, LC Column 250 × 21.2 mm, AXIA™
Packed) was used to separate and collect the conjugates with an
elution gradient of 10/90/90/10% solvent B (TFA 0.05% in ACN) at 1/
11/13/15 min with a flow rate of 10mL/min. The collected fractions
were then transferred to the 20mL scintillation vials and a Biotage
V-10 solvent evaporator with Volatile mode was used to remove the
acetonitrile. The solution fractions were frozen and lyophilized (~8%
yield). NMR was used to confirm the presence of key functional
groups in the products of each stage of the synthesis, including
brimonidine, Mc-VC-PAB-Cl, and Mc-VC-PAB-brimonidine. All com-
pounds were dissolved in deuterated DMSO and characterized with
a Bruker spectrometer (500MHz). 1H chemical shifts were reported
in ppm (δ) and the DMSO peak was used as an internal standard.
Data were processed using TopSpin NMR Data Analysis software,
version 4.1.0, from Bruker (Billerica, MA, USA). The prep-HPLC
retention time (RT) of brimonidine, Mc-VC-PAB-brimonidine, and
Mc-VC-PAB-Cl was 5.1, 9.8, and 11.4 min, respectively. HR97 with
cysteine at the C-terminus as the functional group for linker con-
jugation (FSGKRRKRKPRC, Mw = 1519, >97% purity) was conjugated
to the quaternary-ammonium-linked brimonidine (MC-Val-Cit-PAB-
brimonidine) via a thiol-maleimide reaction. The MC-Val-Cit-PAB-
brimonidine was first dissolved in 1 mL of PBS at 5 mg/mL. HR97
peptide powder (0.5 eq) was added directly to the solution. The
solution mixtures were adjusted to pH 7.4 and allowed to react for
2 h at room temperature. The solution mixtures were then added to
1mL of acetonitrile and purified with the same prep-HPLC condi-
tions. The collected fraction solutions were transferred to the
20mL scintillation vials and the Biotage V-10 solvent evaporator
with volatile mode were used to remove the acetonitrile. The solu-
tions were lyophilized and stored at −20 °C ( ~ 35% yield). For the
sample preparation and MALDI-TOF analysis, the MALDI matrix
sinapic acid (10mg) was dissolved in 1mL of acetonitrile in water
(1:1) with 0.1% TFA, and 1 µL of sample (50 µM) was deposited on the
MALDI sample plate. The matrix (2 µL, 10mg/mL) was deposited on
the air-dried sample and allowed to air dry for 10–20min. The
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MALDI-TOFMS analysis was performed on a Bruker Voyager DE-STR
MALDI-TOF (Mass Spectrometric and Proteomics core, Johns Hop-
kins University, School of Medicine) operated in linear, reflective-
positive ion mode.

In vitro melanin binding assay
Brimonidine, HR97-biotin, and HR97-brimonidine at a range of con-
centrations (3.125, 6.25, 12.5, 25, 50, 100 µg/mL) were dissolved in pH
6.5 PBS solution. The solutions (400 µL) were then mixed thoroughly
with 400 µL of 1mg/mLmNPs in pH6.5 PBS solution and transferred to
the inner reservoir of the rapid equilibrium dialysis (RED) device
inserts (8 K MWCO). The outer reservoir was filled with 800 µL of pH
6.5 PBS solution. The sampleswere incubated on anorbital shakerwith
temperature control at 37 °C and 300 rpm for 48 h (n = 3). The solu-
tions from outer reservoir (free drug) were than collected and trans-
ferred to an autosampler vial for HPLC analysis (Prominence LC2030,
Shimadzu, Columbia, MD) with photodiode-array detection (PDA)
system. Separation was achieved with a Luna® 5 µm C18(2) 100Å LC
column 250× 4.6mm (Phenomenex, Torrance, CA) at 40 °C using
isocratic flow. The amount of bound drug was used to calculate the
binding capacity (mol drug/mgmelanin) and the dissociation constant
(Kd) as previously described20,34.

In vitro stability test for HR97-brimonidine conjugate
Two pairs of human donor eyes were obtained from the Lions Gift of
Sight under protocol IRB00056984 approved by the Johns Hopkins
University School ofMedicine Institutional Review Board. Both donors
were male with an mean age of 74.5. The post-mortem times ranged
from 35–40 h. The eyes were kept at 4 °C during transport and arrived
within 48 h post-mortem. The vitreous and aqueous were first isolated
and subsequently combined and filtered through the 0.02 µm syringe
filter to remove cell debris. HR97-brimonidine (1mg/mL) was incu-
bated with human aqueous or vitreous (700 µL) at 37 °C (n = 3). On
days 0, 1, 7, 14, 21 and 28, 100 µL of the solutions were collected,
diluted with 900 µL of acetonitrile, and characterized by HPLC (Pro-
minence LC2030, Shimadzu) with Luna® 5 µmC18(2) 100Å LC column
250× 4.6mm (Phenomenex). The elution flow rate was 1mL/min and
with gradient of 10/90/90/10% solvent B (TFA 0.1% in ACN) in 1/11/13/
15min at λmax = 250 nm for HR97-brimonidine (RT = 4.6min). The area
under the curve (AUC) on day 0 was used to normalize the AUC cal-
culated on days 1, 7, 14, 21 and 28.

Cathepsin cleavage assay for HR97 and HR97-brimonidine
conjugate
An assay to demonstrate enzymatic cleavage of the linker was used as
previously described with adaptations112. In brief, the HR97-
brimonidine conjugate solution (200μM) was diluted with an equal
volume of 100mM citrate buffer at pH 5.5. Cysteine was added to a
final concentration of 5mM before the addition of human cathepsins
B, K, L, and S to final concentrations of 150nM each. The mixture was
then incubated for 0 h (control group) or 48 h at 37 °C. The solutions
were further diluted with acetonitrile to 1mL and conjugate con-
centration was measured using the HPLCmethod described above. All
concentration values are normalized to the HR97-brimonidine at 0 h.

Cell viability assay of HR97 peptide
The PrestoBlueTM HS cell viability system was used to assess cell via-
bility. ARPE-19 cellswere seeded at0.01 × 106 cells/well in 96well plates
and culturedwithDMEM:F12mediumcontaining 10% FBS according to
the vendor protocol. After 7 days, 90 µL of DMEM/F12 containing 0, 1,
5, 10, or 20mg/mL of the HR97 was added. The cells (n = 5) were then
incubated for 12 h, and viability was measured by adding 10 µL of
PrestoBlueTM HS cell viability reagents at 37 °C. After 0.5, 1, 2, 3, 4 and
5 h, absorbance (570 nm and 600nm) was measured at 37 °C and
normalized according to the protocol provided by the vendor.

Animal studies—Animal welfare statement
Experimental animal protocol (RB21M176) was approved by the Johns
Hopkins Animal Care and Use Committee. All animals were handled
and treated in accordance with the Association for Research in Vision
and Ophthalmology Statement for Use of Animals in Ophthalmic and
Vision Research. Dutch Belted rabbits (4–5 mo) were obtained from
Robinson Services, Inc. Rabbit sex was uniformly distributed and
randomly assigned to each group,whichconsistedwith either 3male/2
female, or 2 male/3 female for IOP/safety studies and 2 male/2 female
for the pharmacokinetic study.

Rabbit IOP measurements, topical dosing, and ICM injection
For the IOP measurements in normotensive rabbits, Dutch Belted
rabbits (2–3 kg) were used (n = 5). IOP was measured with a hand-held
rebound tonometer icareTONOVET (Vantaa, Finland) in the awake and
gently restrained rabbit. Each rabbit was acclimatized to the IOP
measurement procedure for at least 5 days to obtain a stable back-
ground IOP reading. A mean of three IOP measurements for an indi-
vidual eye were taken every other day for 6 days (3 times in total) and
used as a baseline value. For the ICM injection procedure, rabbits were
anesthetized with ketamine/xylazine and received topical anesthesia
with 0.5% proparacaine hydrochloride. A corneal pre-puncture was
performed with a 30G needle, followed with a single bolus ICM
injection of 200 µg (mass of brimonidine) of HR97-brimonidine or
brimonidine tartrate solution in 100 µL saline using a 28Gneedle. After
the procedure, topical bacitracin-neomycin-polymyxin ophthalmic
ointment was applied to both eyes to prevent infection and dry eyes.
On day 7, an ophthalmologistmasked to treatment evaluate the HR97-
brimonidine injected eyes with the following items: functionality of
lids, lashes, conjunctiva, cornea transparency, pigmentation of corneal
endothelium, depth of anterior chambers, inflammation, fibrin
strands, and symmetry of the lens113. The lenses were all clear and the
iris pigmentation was symmetric. In a separate study, a corneal pre-
puncture was performed with a 30G needle, followed with a single
bolus ICM injection of 200 µg (mass of brimonidine) containing a
physical mixture of unconjugated HR97 and brimonidine tartrate
(HR97 + brimonidine), the equivalent amount of HR97 peptide alone,
or saline alone in 100 µL saline. On day 7, day 14, day 21, and day 28, an
ophthalmologist masked to treatment performed the same safety
evaluations described above. IOP wasmeasured on days 2, 3, 4, 5, 6, 7,
8, 10, 12, 14, 16, 18, and 20 after the ICM injection, and change in IOP
from the baseline (ΔIOP) was reported. The mean of three IOP mea-
surementswas taken for each eye byoneobserver, and then confirmed
by a masked observer. Alternatively, a single topical eye drop (Alpha-
gan® P 0.1%, 50 µL) was given (n = 5). The IOP were measured imme-
diately before the topical dosing (0 h), and at 2, 4, 6 and 8 h after the
eyedrop administration. For the pharmacokinetics studies, rabbits
(n = 4 per group) received a single ICM injection with 200 µg (mass of
brimonidine) HR97-brimonidine as described above. Rabbits were
sacrificed 1, 7, 14, 28 days after the injection, and iris, aqueous, and
retina were collected for measuring the brimonidine concentration.
One of the iris tissue samples was left out of the analysis in the day 1
group due to an issue with sample collection.

Measurement of brimonidine in ocular tissues
Brimonidine concentrations in ocular tissues were measured by
liquid chromatography-tandem mass spectrometry (LC-MS/MS) as
previously described38. All samples were collected in pre-weighed
tubes and stored at −80 °C until processing for analysis. Tissue
samples were homogenized in 100–600 μL 1 × PBS using a Bullet
Blender® (Next Advance, Inc, Troy, NY, USA) before extraction.
Brimonidine were extracted from 15 to 50 μL of tissue homogenates
with 50 μL of acetonitrile containing 50/50/2.5 ng/mL of the internal
standards. The top layer was then transferred to an autosampler vial
for LC-MS/MS analysis after centrifugation. All ocular tissue
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samples were analyzed using a 1 × PBS standard curve for brimoni-
dine. Separation was achieved with a Waters HSS PFP (2.1 × 50mm,
1.8 μm). The column effluent was monitored using a 5500 mass-
spectrometric detector (Sciex) using electrospray ionization oper-
ating in positive mode. The mobile phase A was water containing
0.1% formic acid and mobile phase B was acetonitrile containing
0.1% formic acid. The gradient started with mobile phase B held at
20% for 0.5min and increased to 100% over 0.5 min; 100% mobile
phase B was held for 1 min and then returned to 20%mobile phase B
and allowed to equilibrate for 1 min. Total run time was 3min with a
flow rate of 0.5mL/min. The spectrometer was programmed to
monitor the following multiple reaction monitoring (MRM) transi-
tion 391.9 → 295.9 for brimonidine and 295.9 → 216.1 for the internal
standard, brimonidine-d4. Calibration curve for brimonidine was
computed using the area ratio peak of the analysis to the internal
standard by using a quadratic equation with a x-2 weighting func-
tion over the range of 0.25–500, with dilutions of up to 1:100 (v:v).
Core technicians performing sample and data analysis were masked
to treatment group.

Statistical analysis
Statistical analyses of two groups were conducted using two-tailed
parametric (Student’s t test) or non-parametric (Mann–Whitney U)
tests as appropriate. Correlation coefficients were computed using
Pearson correlation (two-tailed). For multiple statistical testing, p
values were adjusted using the Benjamini–Hochberg procedure105.
Statistical analyses were performed using GraphPad Prism 9 or R ver-
sion 4.2.2 (2022-10-31).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data sets, source data for figure generation, and all final property
models are available as compressed files deposited in the Digital
Repository at the University of Maryland (DRUM), https://doi.org/10.
13016/0jck-hnnv114. Cell-penetration and cytotoxicity data sets are
available on the SkipCPP-Pred23 (https://bmcgenomics.biomedcentral.
com/articles/10.1186/s12864-017-4128-1) and ToxinPred25 (http://crdd.
osdd.net/raghava/toxinpred/)websites, respectively. All other relevant
data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corre-
sponding author upon reasonable request. Source data are provided
with this paper.

Code availability
The research notebook containing the code for implementing the
machine learning algorithmsandfigure generation hasbeendeposited
in DRUM, https://doi.org/10.13016/0jck-hnnv114. All machine learning
models can be reproduced by following the code in the research
notebook in the compressed folder.
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