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ABSTRACT

Aging and hearing loss cause communication difficulties,

particularly for speech perception in demanding situations,

which have been associated with factors including cognitive

processing and extended high-frequency (> 8 kHz) hearing.

Quantifying such associations and finding other (possibly

unintuitive) associations is well suited to machine learning.

We constructed ensemble models for 443 participants who

varied in age and hearing loss. Audiometric, perceptual,

electrophysiological, and cognitive data were used to pre-

dict speech perception in noise, reverberation, and with time

compression. Speech perception was best predicted by vari-

ables associated with audiometric thresholds (including new

across-frequency composite variables) between 1–4 kHz, fol-

lowed by basic temporal processing ability. Cognitive factors

and extended high-frequency thresholds had little to no pre-

dictive ability of speech perception. Future associations or

lack thereof will inform the field as we attempt to better un-

derstand the intertwined effects of speech perception, aging,

hearing loss, and cognition.

Index Terms— Machine Learning, Audiology, Speech

Perception, Temporal Processing, Cognition

1. INTRODUCTION

Over 50% of adults in the US > 65 years suffer from sig-

nificant hearing loss [1]. As people age, their ability to un-

derstand speech decreases and places a great burden on their

ability to effectively communicate, particularly in demand-

ing situations that include background noise, reverberation,

multiple talkers, rapid talkers, or accented talkers [2]. These

declines are a result of peripheral hearing loss (i.e., some

speech sounds are less audible), central age-related temporal-

processing deficits (i.e., neural encoding of speech sounds is

distorted), and a decrease in higher-level cognitive abilities

(e.g., memory, non-auditory processing speed) [3].

The complexity of understanding how age, hearing loss,

and cognition intertwine as factors to predict speech-perception

performance argues for modern data-driven analysis ap-

proaches on human measurements [4]. This includes machine

learning, if the data set is large enough. For the present data

study, we collected a large battery of audiometric, percep-

tual, electrophysiological, and cognitive data in 443 partic-

ipants [5]. Novel to this data set is the number of subjects

and suprathreshold perceptual measures of auditory temporal

processing (e.g., pulse-rate discrimination).

Numerous studies have shown that among older listeners,

speech perception is related to working memory [6, 7] and

speed of processing [7, 8]. There is a possible relationship

between hearing loss and cognitive decline as a possible pre-

cursor to dementia and Alzheimer’s disease [9, 10].

The large multidimensional data set contained highly

correlated variables, a challenge requiring variable reduc-

tion for improved predictions. Variable reduction for hearing

thresholds has involved cluster analyses [11, 12]. Our vari-

able reduction approach involved multiple hearing threshold

composite measures from 0.25–14 kHz. Evaluating extended

high-frequency thresholds between 8–14 kHz has become

increasingly common because they appear to predict speech

perception in noise [13, 14].

Here we determine variables predictive of speech percep-

tion to verify previously identified associations in the litera-

ture and identify possible novel associations. The goal is to

produce hypotheses for future studies.

2. METHODS

2.1. Participants

We recruited 443 adult participants (293 female, 125 male,

25 no response) for a separate study [5]. They had a range of

ages (18–85 y, x̄ = 59.7, SD = 22.5) and hearing loss. All par-

ticipants had a rigorous audiometric evaluation and cognitive

assessment done. A subset of 130 participants performed ad-

ditional speech perception and non-speech auditory temporal

processing tasks, and participated in an electrophysiological

assessment.IC
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2.2. Audiometric Tests

Hearing thresholds were assessed at octave intervals between

0.125 and 8 kHz using standard audiometric techniques and

a calibrated audiometer in a sound-attenuating booth. Au-

diometric thresholds were also collected at 3, 6, 10, 12.5,

and 14 kHz, and tympanometry was performed in each ear.

Many participants had audiometrically normal hearing, de-

fined as pure-tone thresholds ≤ 25 dB hearing level (HL) [15]

at 0.25, 0.5, 1, 2, and 4 kHz in the right ear. There were 100

younger normal-hearing listeners with a high-frequency pure-

tone average (HF-PTA: 1, 2, 4 kHz) = 7.3 ± 12.3 dB HL and

187 older normal-hearing listeners with a HF-PTA = 24.4 ±

17.2 dB HL. Some older listeners (n = 120) had a mild-to-

moderate hearing loss [defined as a HF-PTA < 30 dB HL and

thresholds at 2 kHz and 4 kHz < 70 dB HL], with an average

HF-PTA = 40.9 ± 8.0 dB HL.

2.3. Perception, Electrophysiological, and Cognitive Tests

Temporal processing was assessed for several psychoacousti-

cal tasks, including pulse-rate discrimination, gap detection,

gap duration discrimination, and tempo discrimination [5].

Auditory brainstem responses were recorded to 100-µs broad-

band clicks. Auditory steady-state responses (ASSR) were

recorded to band-limited pulse trains presented at rates of 100,

200, 300, and 400 Hz [5]. Sentence recognition in quiet was

measured using the IEEE corpus [16] in five conditions: a

normal rate with no reverberation (i.e., clean speech), with

40% and 60% time compression, and with reverberation (0.6-

s and 1.2-s RT60). There were 10 sentences presented in each

condition. Sentence recognition in noise was measured using

the QuickSIN [17]. Word recognition scores were collected

for single 25-word lists of the NU-6 test [18] presented bilat-

erally at 75 dB HL in quiet. The Montreal Cognitive Assess-

ment (MoCA) [19], assessments from the National Institutes

of Health Cognition Toolbox (List Sorting Working Memory

Test, the Flanker Inhibitory Control and Attention Test, the

Pattern Comparison Processing Speed Test, and the Dimen-

sional Card Sort Test) [20], and a subset of the Speech, Spa-

tial, and Qualities of Hearing Scale [21] were administered.

2.4. Machine Learning Analysis

We derived a total of 147 calculated features from the audio-

metric measurements. We recorded HL of each audiogram

and computed new features based on the mean and differ-

ence between the two ears for each frequency. Using these

features, we computed profile variables by applying a simple

linear model to each participant: slope, intercept, coefficient

of determination of the line of best fit, and sum of hearing

thresholds across frequencies. We calculated these profile

features for three different frequency ranges: standard fre-

quencies (SF; 2.5–8 kHz), extended high frequencies (EHF;

10–14 kHz), and all frequencies.

We extracted additional features from the audiograms of

both ears including total length of segments joining consec-

utive thresholds, highest frequency each subject can hear, in-

flection point, notch index [22], and a notch presence using

to three definitions. One type of notch definition was a point

at 3, 4, or 6 kHz where there are differences of at least 15

dB and 10 dB compared to the previous and next frequencies,

respectively. The two other definitions were described by oth-

ers [23, 24]. Finally, we added features that describe the sym-

metry, configuration, and severity of an audiogram [25].

Some subjects did not respond at the highest-intensity

limits of the equipment, indicating a profound hearing loss

at that frequency (typically at extended high frequencies > 8

kHz). To reflect this hearing loss, we replaced the missing

hearing thresholds with +5 dB above the maximum inten-

sity level that our equipment allows at each frequency, as

is typical in other publications [26]. This way, the hearing

thresholds reflect the profound degree of the true thresholds

but remain distinguishable from those who actually heard

the signals at the equipment limits. For the other variables,

missing categorical values were imputed by using the most

frequent category, and the numeric values were replaced with

variable medians. All features are grouped into the following

seven categories: subject information, audiometric measures,

behavioral-speech tests, behavioral-non-speech tests, elec-

trophysiological measures, cognitive tests, and subjective

questionnaires. We reduced the number of features by se-

lecting those that minimized the total Akaike information

criterion based on the results of random forest analyses.

We built super learner [27] stacked generalization mod-

els with an ensemble of methods using SuperLearner pack-

age [28] with ten-fold cross-validation and non-negative least

square error as a loss function. For base models, we included

random forests, lasso and elastic-net regularized generalized

linear models, extreme gradient boosting, and feed-forward

neural networks. To evaluate the performance of the super

learner model, an additional layer of 5-fold cross-validation

was performed and the whole process was repeated five times.

The performance measure (percent variance explained) was

then averaged across all folds and repeats. All analyses for

this study were carried out in the Statistical Computing Pro-

gramming Language R (Version: 4.1.3) [29].

Model performance was measured as the percentage of

variance explained, which is defined as the fraction of the

variance of the response variable that can be explained us-

ing the predictors. Permutation-based feature importance was

calculated from 25 replications and reported as relative values

such that the maximum score has a value of 100.

3. RESULTS

We used super learner to model the scores of three different

speech-perception tests: QuickSIN speech-in-noise, sentence

recognition with 60% time compression, and sentence recog-
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Fig. 1: Variable importance for predicting QuickSIN Speech-

in-Noise. Points represent importance scores from 25 repli-

cations. Box plots indicate median (middle line), 25th, 75th

percentile (box). Whiskers extend 1.5 × interquartile range.

nition with 1.2-s reverberation time. To eliminate the depen-

dence between different behavioral-speech features, we ex-

cluded all other features that fall under the same category

before performing feature elimination and building the su-

per learner model. For simplicity, the plots are restricted to

features with average relative importance > 15 (an arbitrarily

chosen value). Group variable importance analysis selected

the audiometric category as the most important predictor for

the scores of the three speech-perception tests.

The proportion of variance in QuickSIN test scores ex-

plained was 66.91%, and 10 of 12 important features were

from the audiometric category including (ordered by impor-

tance) HL of the right ear at 1 kHz, HL of the left ear at 3

kHz, minimum threshold of the right ear at the mid-frequency

range (1–3 kHz), mean and maximum of thresholds of the left

ear at the mid-frequency range, HL of the right ear at 0.5 and 2

kHz, mean of thresholds of the right ear at the mid-frequency

range, mean of HL of two ears at 2 kHz, and total length

of segments joining consecutive left ear thresholds (Fig. 1).

The other two were from the behavioral-non-speech category

(i.e., basic temporal processing), which includes the average

of pulse-rate discrimination values across frequencies (100–

400 Hz) and at the single pulse rate of 300 Hz.

The proportion of variance in 60% time compression sen-

tence recognition scores explained was 74.47%, and 5 of 6

important features were from the audiometric category in-

cluding (ordered by importance) mean of thresholds of the

NIH Toolbox
flanker test

Mean HL of both
ears at 4 kHz

Left ear HL at 1
kHz

Mean HL of both
ears at 1 kHz

Mean mid−range HL
of left ear

Mean mid−range HL
of right ear

20 40 60 80 100

Relative importance

Audiometric

Cognitive

Fig. 2: Variable importance for predicting sentence recogni-

tion with 60% time compression. Points represent importance

scores from 25 replications. Box plots indicate median (mid-

dle line), 25th, 75th percentile (box). Whiskers extend 1.5 ×

interquartile range.

Mean HL of both
ears at 1 kHz

Total length of
segments of right

audiogram

Pulse trains at
100 Hz

Right ear HL at 2
kHz

20 40 60 80 100

Relative importance

Audiometric

Behavioral−Non−Speech

Fig. 3: Variable importance for predicting sentence recogni-

tion with 1.2-s reverberation time. Points represent impor-

tance scores from 25 replications. Box plots indicate median

(middle line), 25th, 75th percentile (box). Whiskers extend

1.5 × interquartile range.

right ear at the mid-frequency range, mean of thresholds of

the left ear at the mid-frequency range, mean of HL of two

ears at 1 kHz, HL of the left ear at 1 kHz, and mean of HL of

two ears at 4 kHz (Fig. 2). The last feature was the Flanker

test (inhibitory control and attention cognitive test).

The proportion of variance in 1.2-s reverberation time

sentence recognition scores explained was 71.77%, and 3 of

4 important features were from the audiometric category in-

cluding (ordered by importance) HL of the right ear at 2 kHz,

total length of segments joining consecutive right ear thresh-

olds, and mean of HL of two ears at 1 kHz (Fig. 3). The

last feature was from the behavioral-non-speech category,

pulse-rate discrimination for 100-Hz pulse trains.

Information about model parameters, variance explained,

model weight, R code and models are available in the supple-

mentary material at https://osf.io/ta7kf.

4. DISCUSSION

We used machine learning to determine variables predictive

of demanding speech-perception conditions to verify previ-
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ously identified associations and identify possible novel as-

sociations, producing hypotheses for future studies. We also

developed new variables that had significant contributions to

the variance explained by our models, such as the total length

of segments joining consecutive thresholds (Fig. 1 and 3).

Such variables capture properties of the entire hearing range,

rather than single frequencies, showing the importance of us-

ing composite variables to reduce the audiometric variable

space.

Although others have used clustering and ensemble-based

approaches to examine communication difficulties in relation

to audiometric profiles [30, 31], our results suggest that the

largest amount of speech-perception variance is explained by

audibility from 1–4 kHz, followed by temporal processing

ability, and attention (Fig. 1, 2, and 3). Audiometric variables

were the most predictive of demanding speech perception,

particularly for variables that were associated with thresholds

between 1–4 kHz (e.g., the mid-range composite variables;

Fig. 1, 2), consistent with previous studies [32]. Conspicu-

ous in their absence were extended high-frequency (> 8 kHz)

threshold variables. It could be that the importance of ex-

tended high-frequency thresholds is diminished by hearing

loss around 1–4 kHz to a negligible level. Similarly, hearing

loss can obscure effects of aging, and one needs to carefully

design their study to include groups that vary both by hearing

loss and age [5] to see effects of the relatively weaker factor

of age.

We found a limited role of cognitive processing abilities

in explaining the variance in speech-perception performance.

The only cognitive factor to appear in our results was the

Flanker score, which is a measure of inhibition of irrelevant

stimuli and attention; this factor was the second most impor-

tant factor in a meta-analysis [7] and was negatively corre-

lated with cortical envelope in older listeners in [33]. Absent

was working memory and processing speed, which was un-

expected given past studies [5, 7, 8]. Noteworthy is that the

MoCA, which is prevalent in its use as a cognitive screener in

the field of hearing and aging, had no predictive power for our

outcome variables. In fact, in a separate analysis (not shown)

the combined MoCA score or any individual question was not

predictive of any variable in this dataset.

These findings may suggest that researchers need to be

cautious in future study design when investigating extended

high-frequency threshold and cognitive effects on auditory

processing like speech perception. Controlling for more

prominent variables like hearing thresholds appears critical.
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